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Abstract 

Rectangular box-like structures are used widely in a large number of engineering applications, e.g. as 

elements of railway carriages, heavy goods vehicles, buildings, civil engineering constructions, etc. Although 

flexible rectangular boxes represent one of the geometrically simple types of engineering structures, their 

structural-acoustic properties can not be described by closed-form analytical solutions. In the present study, a 

comprehensive numerical investigation of typical all-flexible rectangular box structures has been carried out to 

elucidate the physics of structural–acoustic interaction in them and to explore the possibilities of reduction of the 

associated structure-borne interior noise. Finite element method has been used to compute the resonant 

frequencies, the mode shapes and the structural-acoustic frequency response functions of different rectangular 

box models. The obtained results could assist in better understanding of structural-acoustic properties of flexible 

rectangular boxes as well as of numerous more complex structures using rectangular boxes as their building 

elements. 

Keywords: Flexible rectangular boxes; Structural-acoustic properties, Finite element analysis, 

Structural-acoustic modes, Frequency response functions. 
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Аннотация 

Прямоугольные коробчатые конструкции широко применяются в большом количестве 

инженерных конструкций, например, в качестве элементов железнодорожных вагонов, большегрузных 

автомобилей, зданий, инженерных сооружений и т. д. Хотя гибкие прямоугольные коробки 

представляют собой геометрически простые типы инженерных сооружений, их структурно-

акустические свойства не могут быть описаны в виде  простых аналитических решений. В настоящей 

работе проводится комплексное численное исследование типичных гибких прямоугольных коробчатых 

конструкций для выяснения физики структурно–акустического взаимодействия в них и изучения 

возможности сокращения связанного корпусного шума внутри кабины. Метод конечных элементов был 

использован для вычисления резонансных частот, форм колебаний и функций структурно-акустической 

частотной характеристики различных моделей прямоугольных коробчатых конструкций. Полученные 

результаты могут способствовать лучшему пониманию структурно-акустических свойств гибких 

прямоугольных конструкций, таких как многочисленные комплексные структуры, использующие данные 

прямоугольные конструкции как строительные элементы. 

Ключевые слова: гибкие прямоугольные конструкции; структурно-акустические свойства, 

метод конечных элементов, структурно-акустические методы, функции частотного диапазона. 
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Introduction 

Flexible rectangular box structures, often called box-like or box-type structures, are 

used widely in a large number of engineering applications, e.g. as elements of railway 

carriages, heavy goods vehicles, buildings, civil-engineering constructions, etc. Although all-

flexible rectangular boxes represent one of the geometrically simple types of engineering 

structures, the analysis of their structural-acoustic properties can not be performed in terms of 

closed form solutions. Earlier, Dickinson and Warburton [1] have obtained approximate 

analytical expressions for the natural frequencies of uncoupled vibrations of such structures, 

considering them as the systems consisting of plates with the boundary conditions 

approximated by Fourier series. Equalizing the resulting expressions to the actual boundary 

conditions led to an infinite set of equations that had to be truncated to obtain the approximate 

solutions. These authors also have conducted experimental measurements of the natural 

frequencies. Later, Hooker and O‟Brien [2] have calculated the lowest natural frequencies for 

a box of the same dimensions using finite element (FE) method and compared them with the 

approximate analytical and experimental results obtained by Dickinson and Warburton [1].  

More recently, the authors of the paper [3] used FE calculations to carry out vibration 

analysis of a thin-plate box, considering only in-plane motion. They asserted that under 

certain conditions, the vibrational response is dominated by long wavelength in-plane waves. 

Later on they extended their study, analysing flexural vibrations of the same model using a 

combination of FE and analytical approaches [4]. The proposed method aimed to predict 

uncoupled vibrations of thin-plate structures in the medium frequency range. In the papers [5-

8], vibrations of rectangular box-like structures have been investigated analytically using 

some simple approximations, e.g. taking into account only in-plane waves being transmitted 

to the adjacent walls under the impact of the initially flexural waves.  

Some authors have utilized rectangular box models to verify different optimization 

procedures for noise reduction [9-12]. In this regard, the rectangular box models assisted in a 

quicker estimation of the proposed design modifications and of the efficiency of noise 

reduction.  

In spite of the extensive use of the above-mentioned all-flexible rectangular box 

structures, their coupled structural-acoustic behaviour was not properly analysed. Indeed, the 

existing approximate analytical solutions for structural normal modes of vibration [1] are 

rather complex, and their use for a coupled structural-acoustic analysis is too problematic. As 

far as we are aware, numerical investigations of structural-acoustic properties of all-flexible 

rectangular boxes have not been reported either.  

The aim of this paper is to carry out a comprehensive numerical investigation of 

structural-acoustic properties of all-flexible rectangular boxes. In the first part of the paper, 

the attention will be paid to understanding the uncoupled structural and acoustic properties of 

flexible rectangular boxes and to establishing relationships between its geometrical symmetry 

and modal patterns. This part will thus revisit the results obtained in the pioneering papers [1, 

2]. A comparison will be made, where possible, of the results obtained in the present paper 

with the results of [1, 2]. In the second part of the paper, the coupled structural-acoustic 

properties of all-flexible rectangular boxes will be studied. In particular, their frequency 

response functions (FRF‟s) will be investigated and their features interpreted using the results 

of the first part. Some of the results described in the present paper have been reported in the 

authors' earlier paper [13]. 

 

 

 



Georgiev, V.B., Krylov, V.V. 
Structural-Acoustic Properties of Flexible Rectangular Boxes 

 

4 
1. Basic Model Description 

The basic model under consideration represents a rectangular box with all-flexible 

walls of the same thickness made of steel (with the values of Young‟s modulus E = 2 10
11

 

N/m
2
, Poisson's ratio  = 0.31 and mass density  = 7950 kg/m

3
), see Fig. 1. 

 
Fig. 1. Finite element model of a rectangular box structure 

 

The only boundary conditions imposed on the model are applied at the corners of the 

bottom plate, which simulates fixing the box at four points to a rigid foundation. The model 

dimensions are as follows:  x = 2.4,  y = 1.4  and  z = 1.5 meters. The wall thickness of the 

model was chosen to be 8 mm, which corresponds to a fundamental structural vibration 

frequency of about 15–20 Hz.  

Initially, an analysis of the uncoupled structural and acoustic sub-systems is carried 

out, and then some structural-acoustic modes and a set of FRF‟s of the coupled structural-

acoustic system is calculated and discussed. 

2. Structural and Acoustic Analysis of the Uncoupled Model 

In this section, using finite element software, MSC.Nastran and MSC.Patran, the 

uncoupled normal vibration modes and the corresponding natural frequencies of the all-

flexible box structure under consideration is being analyzed. Note that for the purpose of the 

uncoupled analysis, a slightly different model is used. The difference from the above-

mentioned basic model used in the fully coupled analysis is in the absence of boundary 

conditions at four corners at the bottom. The purpose of this was to generalize the uncoupled 

analysis of the rectangular box structure. Thus, “free-free‟ boundary conditions were adopted 

everywhere, whereas in the coupled analysis the model was considered as being placed on a 

certain foundation. In other words, the boundary conditions utilized in the coupled analysis 

simulated an attaching mechanism, which restricts the structural behavior of the model. In the 

uncoupled analysis, a refined finite element mesh was used consisting of 7248 CQUAD finite 

elements - for the structural sub-system, and 5040 CHEXA finite elements - for the acoustic 

sub-system.  
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2.1 Qualitative Interpretation of the Structural Behaviour of Rectangular Boxes 
Figure 2 shows some structural vibration modes calculated for the uncoupled 

rectangular box model. As the box structure under consideration is fully symmetrical in 

respect of the three orthogonal coordinate planes, a number of symmetric and anti-symmetric 

structural modes should occur (see also [2]). In the 3-D picture (Fig. 2), the symmetric and 

anti-symmetric normal modes can not be seen clearly. This is why in Fig. 3 the same normal 

modes are presented in XY plane, where symmetric and anti-symmetric modes are clearly 

seen.  

Except for the existence of symmetric and anti-symmetric modes, all-flexible 

rectangular box structures exhibit another interesting phenomenon known from the general 

symmetry considerations, namely the presence of repeated frequencies associated with 

degenerate modes. This phenomenon, of course, occurs in rectangular boxes of higher 

symmetry. To illustrate it numerically, some additional calculations have been conducted for 

a cubic box model with the dimensions (1, 1, 1) m (see Fig. 4) and for a rectangular box 

model with the dimensions (2.4, 1.5, 1.5) m (see Fig. 5).  

It is interesting to attempt a kind of qualitative interpretation of structural vibrations 

of flexible rectangular boxes. In particular, looking at Fig. 4, one can suggest that, in respect 

of plate wave propagation, the box structure under consideration can be considered as an 

inhomogeneous plate-like structure with spatially varying geometry and stiffness. 

a) b)

c) d)

e) f)

 
Fig. 2. Some structural modes of a rectangular box, at: a) 13.692 Hz, b) 22.069 Hz,  

c) 34.730 Hz, d) 42.138 Hz, e) 43.541 Hz and f) 90.904 Hz 
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e)

c)

a)              b)

d)

f)e)

c)

a)              b)

d)

f)

 
Fig. 3. Symmetric and anti-symmetric normal modes at: a) 13.692 Hz, b) 22.069 Hz, c) 

34.730 Hz, d) 42.138 Hz, e) 43.541 Hz and f) 90.904 Hz 

 

The structure‟s plates and edges are respectively more and less prone to vibrate. In 

this regard, the edges can be likened to a sort of stiffeners or ribs. It has been pointed out by 

Skudrzyk [14] that such ribs can transmit (without significant losses) the twisting moment 

around their longitudinal axis, and only at very high frequencies the rotary inertia can 

suppress the transmission. On the other hand, the bending moment around their transverse 

axes is not transmitted except for very high frequencies.  

In other words, it follows from this qualitative interpretation that waves which nodal 

lines are parallel to the edges can be relatively easily transmitted to an adjacent plate, whereas 

those with nodal lines perpendicular to the edges are efficiently isolated. Thus, the higher 

stiffness of the edges defines different transmission properties of the waves in different 

directions, which directly influences the plate wave propagation. 
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Fig. 4. „Waveguide modes‟ of a cubic box structure at 105.11 Hz 

 

Returning to the box structure under consideration and bearing in mind the above-

mentioned qualitative properties of the edges, it can be assumed that the edges form three 

closed-loop waveguides on the box surfaces that govern plate wave propagation and form the 

normal modes of vibration. For example, in Fig. 4 the wave circulation around each of the 

coordinate axes can be clearly seen. Furthermore, the above-mentioned three quasi-

circumferential waveguides could be assumed to form relatively independent closed-loop 

resonators, which means that predominant vibration modes occur in one of these guides and 

rarely the vibratory motion spreads on two or three waveguides simultaneously. In this way, 

one can conclude that predominant normal modes of box structures consist of the normal 

modes of each of the above-mentioned three closed-loop „waveguide resonators‟. 
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Fig. 5. „Waveguide modes‟ of a modified box model „A‟ at 42.36 Hz in the directions of:  

a) Y-axis and b) Z-axis 

 

To demonstrate the influence of geometrical dimensions on the existence of repeated 

frequencies, it is convenient to compare the above-mentioned waveguide resonators between 

them. According to the above interpretation, the initial model of a box structure (see Figs. 1 

and 2), with the dimensions 2.4, 1.4 and 1.5 m respectively along the coordinates x, y and z, 

forms three different coupled waveguide resonators and its natural frequencies are all 

different. In the light of the above, the next logical step is to consider the most symmetrical 

model with all waveguide resonators being identical. In this regard, a cubic box, which forms 

three absolutely identical waveguides along the different coordinates, satisfies the necessary 

requirements. As expected, in this case the predominant normal modes occur at a number of 

sets of three repeated natural frequencies. For example, in Fig. 4 one can see the modes 

corresponding to one of these sets of repeated resonance frequencies, i.e. at 105.11 Hz.  For 

each of the modes shown in Fig. 4, each of the resonators vibrates in the same manner as the 

other. In other words, in the case of a cubic model there are three different normal modes 

corresponding to the same frequency, as expected (a triple degeneracy), and each of them 

belongs to one of the waveguide resonators.  

Using a slightly modified rectangular box model (let us call it model „A‟), a change 

associated with the transition between the cubic model (Fig. 4) and the original rectangular 

model (see Figs. 1 and 2) was investigated (see Fig. 5). The dimensions of the model „A‟ were 

2.4, 1.5 and 1.5 m, which has made it more symmetric compared to the initial rectangular 

model but less symmetric in comparison with the cubic model.  As expected, this structure 

has two identical modes in respect of y and z coordinates and one different mode in respect of 
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x axis. Finite element calculations show a number of sets of two repeated natural frequencies 

associated with the two identical waveguide resonators, and most of the other resonances are 

associated with the third resonator. In Fig. 5 one can see modes associated with wave 

propagation in the two identical resonators around y and z directions. In this case, the 

behavior of the equal resonators is similar to those in the case of a cubic model. The 

difference is in the presence of the third resonator associated with a significant number of 

normal modes that never occur at a repeated frequency.  

Note in this connection that vibrations of a simple non-circular (oval-like) cylindrical 

shell structure have been studied numerically and experimentally [15, 16] as well as 

analytically [17]. It has been demonstrated that the natural frequencies of this oval-like shell 

model can be approximated by the local resonant frequencies of each of its quasi-flat plate 

components. This approximation was possible as a result of weak coupling between the top 

and bottom quasi-flat plates of this model due to much higher effective stiffness of the 

adjacent curved plates (shells) separating the top and the bottom quasi-flat plates. In this 

regard, a rectangular box is very different, as each of its constitutive plates has four other 

plates adjacent to it, and all adjacent plates are strongly coupled to each other, so that no 

separate consideration of plate vibration is permitted.  

A rectangular box structure can be considered as a compound of six rectangular 

plates which individual fundamental frequencies, assuming the same material properties for 

each of them, depend only on their geometrical characteristics. The basic box model studied 

in this paper has dimensions of 2.4, 1.4 and 1.5 m in respect of x, y and z coordinates, and its 

individual plate components are the following:  plate component 1  (2.4, 1.5 m), plate 

component 2  (2.4, 1.4 m) and plate component 3  (1.5, 1.4 m). These dimensions determine 

very close sets of resonant frequencies of the individual component plates. 

 

Table 1. Structural and acoustic natural frequencies of an uncoupled box model 

№ 

Box 

structure, 

natural 

frequencies, 

Hz 

Plate  

component 1, 

natural 

frequencies,  

Hz 

Plate 

component 2, 

natural 

frequencies, 

Hz 

Plate  

component 3, 

natural 

frequencies, 

Hz 

Acoustic, FE 

calculated, 

natural 

frequencies, 

Hz 

Acoustic, 

exact, 

natural 

frequencies, 

Hz 
1 2 3 4 5 6 7 

1 13.692 13.693 11.805 (1, 1) 13.061 (1, 1) 18.209 (1, 1) 69.07 (1, 0, 0) 69.02 (1, 0, 0) 

2 19.306 17.019 21.726 (2, 1) 22.974 (2, 1) 43.609 (2, 1) 110.6 (0, 0, 1) 110.4 (0, 0, 1) 

3 20.749 18.506 37.282 (1, 2) 39.514 (3, 1) 47.387 (1, 2) 118.5 (0, 1, 0) 118.3 (0, 1, 0) 

4 22.069 22.074 38.275 (3, 1) 42.307 (1, 2) 72.463 (2, 2) 130.4 (1, 0, 1) 130.2 (1, 0, 1) 

5 24.821 23.834 47.090 (2, 2) 52.094 (2, 2) 85.958 (3, 1) 137.2 (1, 1, 0) 137.0 (1, 1, 0) 

6 26.290 25.876 61.448 (4, 1) 62.675 (4, 1) 96.024 (1, 3) 138.4 (2, 0, 0) 138.0 (2, 0, 0) 

7 28.509 26.652 63.458 (3, 2) 68.427 (3, 2) 114.33 (3, 2) 162.2 (0, 1, 1) 161.9 (0, 1, 1) 

8 29.983 27.250 79.735 (1, 3) 91.038 (1, 3) 120.62 (2, 3) 176.2 (1, 1, 1) 175.9 (1, 1, 1) 

9 34.730 28.773 86.394 (4, 2) 91.317 (4, 2) 145.23 (4, 1) 177.2 (2, 0, 1) 176.8 (2, 0, 1) 

10 42.138 34.276 89.381 (2, 3) 92.450 (5, 1) 161.70 (3, 3) 182.2 (2, 1, 0) 181.8 (2, 1, 0) 
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In Table 1, columns 3, 4 and 5, the first ten analytically calculated natural 

frequencies of the separate plate components satisfying simply supported boundary conditions 

are presented. One can see that resonant frequencies of these plates are noticeably different 

from the FE results for the resonant frequencies of the full box structure (columns 1 and 2 in 

Table 1). This agrees with the above-mentioned statement about the lack of possibility to 

approximate rectangular box resonant frequencies by resonant frequencies of its separate plate 

components. 

Note that the natural frequencies of the full box structure presented in Table 1 have 

been calculated for the two cases: with “free-free” boundary conditions (column 1) and with 

simply supported boundary conditions imposed on the all edges of the model (column 2). 

Despite some discrepancies between these sets of frequencies, their closeness, at least for the 

first eight modes, is indicative. In this frequency range, the structure under both sets of 

boundary conditions has high modal density. This is why under “free-free” boundary 

conditions there are 312 resonance peaks in this range (excluding the first six rigid-body 

natural frequencies) and the last one occurs at 498.90 Hz, whereas under simply supported 

boundary conditions the result is 311 peaks with the last natural frequency at 499.99 Hz. 

These calculations support the assumption made earlier that in the low and medium frequency 

ranges the edges of a rectangular box-structure transmit predominantly flexural waves which 

nodal lines are parallel to them. 

d)c)

b)a)

 
Fig. 6. First four uncoupled acoustic modes of a rectangular box enclosure, at:  

a) 69.07 Hz, b) 110.64 Hz, c) 118.57 Hz and d) 130.43 Hz 

 

Figure 6 and Table 1 show some of the normal modes and natural frequencies of the 

uncoupled acoustic sub-system. The comparison between the analytically calculated natural 

frequencies (Table 1, column 7), which are determined very easily for the acoustic rectangular 

sub-system, and those calculated using finite element techniques (Table 1, column 6) shows a 

good agreement between them and thus validates the chosen mesh size. Even in the medium 

frequency range (for mode (6, 2, 1)) the exact solution defines the natural frequency of 489.44 

Hz, whereas the finite element code gives 499.67 Hz. In other words, using this finite element 

mesh, a maximum relative error of 2 % in the highest frequency range of interest was 

achieved, which guarantees correct and reliable numerical results. 
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2.2 Comparison with Other Theoretical and Experimental Results 
 

It is interesting to compare the results of the present numerical approach with the 

results obtained experimentally and theoretically by the earlier authors. For that purpose, a 

box structure with the dimensions  x = 0.36576, y = 0.3048 and z = 0.24384, m  has been 

calculated, i.e. the same one that has been used by Dickinson and Warburton [1] and by 

Hooker and O‟Brien [2] who investigated it from the viewpoint of purely structural vibration 

behavior.  

Figure 7 demonstrates the first 8 normal modes calculated in the present paper for 

Dickinson and Warburton‟s model, whereas Fig. 8 shows the same normal modes in XY 

plane only - in order to demonstrate symmetric and anti-symmetric spatial patterns more 

clearly. The similarity between these normal modes and those shown in Fig 2 and Fig. 3 is 

quite obvious. 

(8)(7)

(6)(5)

(4)(3)

(2)(1)

 
Fig. 7. First eight normal modes calculated for Dickinson and Warburton‟s model 
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(8)(7)

(6)(5)

(4)(3)

(2)(1)

 
Fig. 8. First eight normal modes calculated for Dickinson and Warburton‟s model in XY 

plane 

 

In Table 2, the natural frequencies of the model under consideration obtained by 

different authors are presented. The approximate analytical results of Dickinson and 

Warburton [1].are shown in column 2, whereas column 3 presents their experimental results. 

In column 4, the numerical results obtained using the procedure adopted for all numerical 

calculations in the present paper are shown. In column 5, another set of numerical data 

obtained by Hooker and O‟Brien [2] can be seen.  

As one can see, there is a good agreement between the experimental measurements 

(column 3) and the numerical results of the present paper (column 4).  On the other hand, 

comparing the FE results of the present work and of the work of Hooker and O‟Brien [2] with 

the experimental results, one can see a noticeable improvement in accuracy of numerically 

calculated natural frequencies in the present paper as compared to those calculated by Hooker 

and O‟Brien [2], which could be expected for a modern finite element software. Comparing 

the present FE results with the approximate analytical calculations of Dickinson and 

Warburton [1], one can see that the precision of the latter is generally not as good as that of 

the present work, but it is better than the precision achieved by Hooker and O‟Brien [2]. 
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Table 2. Measured and calculated natural frequencies of vibration for Dickinson and 

Warburton‟s box model 

№ 

Theoretical 

frequencies, Hz, 

(Dickinson and 

Warburton 1967) 

Experimental 

frequencies, Hz, 

(Dickinson and 

Warburton 1967) 

FE frequencies, 

Hz, 

(Present  work) 

FE frequencies, 

Hz, 

(Hooker and 

O’Brien 1974) 
1 2 3 4 5 

1 179 178 178.53 184 

2 203 228 230.36 206 

3 258 264 270.88 262 

4 272 282 281.87 279 

5 283 297 301.85 291 

6 333 328 331.54 336 

7 384 395 397.82 394 

8 397 399 399.16 409 

9 437 451 449.87 452 

10 455 479 473.91 465 

11 486 495 485.43 497 

12 499 497 499.29 512 

13 570 571 565.08 588 

14 577 580 575.10 595 

15 624 634 625.15 669 

16 648 642 640.51 671 

3. Structural-Acoustic Analysis of the Fully Coupled Model 

In this section, fully coupled structural-acoustic modes are investigated, and a set of 

structural-acoustic frequency response functions (FRF‟s) at specific acoustic nodes are 

discussed and compared. As was mentioned above, simply supported boundary conditions at 

the corner nodes of the bottom plate (Fig. 1) were imposed to simulate an attaching 

mechanism. In the coupled model, 1812 CQUAD structural finite elements and 5040 CHEXA 

acoustic finite elements were used. Energy losses in the structure were modeled using 3 % 

damping factor. As far as air acoustic losses are concerned, a simple damping coefficient of 1 

% was used for the sake of simplicity.  

In Figure 9, some of the normal modes of the fully coupled model, that are 

influenced by the first and second uncoupled acoustic modes, are presented. As it is well 

known [18], the coupling depends on the spatial similarity and frequency closeness between 

the uncoupled structural and acoustic normal modes. Therefore, some of the structural modes 

can couple better with certain acoustic modes, in contrast to others. The three normal modes 

shown in Fig. 9, at about 68, 71 and 111 Hz, are not much affected by the coupling effects 

and are very similar to the corresponding uncoupled modes. Note that these particular modes 

also do not make significant contributions to the overall structural-acoustic frequency 

response functions (see Figs. 10 – 13).  

The structural-acoustic pressure FRF‟s calculated in the centre of the box interior (at 

node 4826) and away from the centre (at node 6825) are shown in Figs. 10 and 11 

respectively. For each of these figures, the driving force with the amplitude of 200 N is 

applied in the centre and in the vicinity of a corner of the bottom plate. In Figs. 12 and 13 

respectively, the same FRF‟s are plotted together for different nodes and for the driving force 

applied either in the centre or in the vicinity of a corner of the bottom plate.  
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Taking into account the value of the first uncoupled acoustic natural frequency of the 

model, which is about 69 Hz, the graphs presented in Figs. 10 – 13 can be regarded as 

consisting of two parts. The first part, bellow 69 Hz, represents the area where FRF‟s are 

induced by structural vibrations of the model. The second part, above 69 Hz, is the area where 

FRF‟s are formed by a complex interaction of the structural and fluid vibrations. In the first 

part of the graphs, one can notice that resonant amplitudes depend only on the position of the 

external force and do not depend on the position of a receiver. This can be clearly seen in 

Figs. 10 and 11, where the difference between them is around 15 dB, and in Figs. 12 and 13, 

where FRF‟s at both receiver positions simply coincide. 

f)e)

d)c)

b)a)

 
Fig. 9. Normal modes of a coupled box model:  

a, b) at 68.352 Hz;  c, d) at 71.848 Hz;  and  e, f) at 111.72 Hz. 

In the second part of the graphs, above 69 Hz in Figs. 10 – 13, the FRF‟s 

demonstrate more complex behaviour. The maximum peaks in this part occur at different 

frequencies for each FRF. For example, in Fig. 12, the FRF at node 4826 has a maximum 

peak about 32 dB that occurs at 175 Hz, whereas for the FRF at node 6825, the maximum 

peak is about 27 dB at about 130 Hz. This means that one and the same excitation can affect 

in different way a potential receiver. In this case, the position of node 4826 is much more 

prone to higher interior noise than the position of node 6825. Of course, under different 

conditions the situation might be different.  

As expected and as was mentioned above, the position of an external force can 

influence significantly the sound pressure response in a box structure. If a force acts close to a 

nodal line of a structural model, then the force can not excite many of the structural normal 

modes and the pressure response inside the model will be much lower in a certain frequency 

range. In practice, a complex geometry of the structure and a high dencity of the normal 

modes make it quite difficult to find the appropriate nodal lines. However, in the case of 

success, a noticeable noise reduction can be achieved. In this regard, the comparison between 

FRF‟s for different positions of the disturbing force, see Figs. 10 and 11, shows significant 
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differences between the overall pressure responses. This means that the disturbing force 

applied to these positions excites different normal modes. Thus, the center of the bottom plate 

is an anti-nodal position for some of the normal modes, and a force applied to this position 

can induce a significant sound pressure response inside the box model. In the same time, the 

position in the vicinity of a corner of the bottom plate can be hardly considered as anti-nodal 

for whichever normal mode, and generation of interior sound by a disturbing force applied 

there can be substantially reduced.  

Another key feature that can influence the sound pressure response in an enclosed 

cavity is the position of a receiver (e.g., a microphone). As in the case of external force, the 

position of a microphone can increase or decrease noise level perceived by a receiver. 

Assuming that the location of a measurement device is close to a nodal line of a certain 

acoustic mode of the enclosure, the pressure response at that position will be insignificant 

compared to all other positions. 
 

 

Fig. 10. Structural-acoustic FRF‟s calculated at node 4826 for a driving force applied close to 

a corner (solid curve) and in the centre of the bottom plate (dash-dotted curve) 

 

Fig. 11. Structural-acoustic FRF‟s calculated at node 6825 for a driving force applied close to 

a corner (solid curve) and in the centre of the bottom plate (dash-dotted curve) 
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Fig. 12. Structural-acoustic FRF‟s calculated at node 4826 (solid curve) and at node 6825 

(dash-dotted curve) for a driving force applied in the centre of the bottom plate 

 

Fig. 13. Structural-acoustic FRF‟s calculated at node 4826 (solid curve) and at node 6825 

(dash-dotted curve) for a driving force applied close to a corner of the bottom plate 

 

In this regard, comparing the graphs shown in Figs. 12 and 13, one can notice that for 

a range between 50 and 200 Hz the FRF at node 4826 is significantly lower, in comparison 

with the pressure FRF at node 6825. Because node 4826 (the center of a rectangular 

enclosure) is nodal for the first four acoustic modes (see Fig. 6), the decrease in sound 

pressure level is well noticeable in the considered frequency range. Above 200 Hz, this 

location is not nodal any more, and the sound pressure level becomes nearly the same as that 

for node 6825. 
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4. Conclusions 

In the present paper, a comprehensive finite element analysis of structural, acoustic, 

and coupled structural-acoustic properties of all-flexible rectangular boxes has been carried 

out. Although the all-flexible model is geometrically similar to the widely used simple model 

of a rigid rectangular box with only one flexible wall (that can be described analytically), it is 

much more complex from the point of view of its structural-acoustic behaviour. Therefore, its 

analysis represents an important step forward in understanding structural-acoustic properties 

of more complex and more realistic structural-acoustic models.  

The initial attention in this study has been paid to the uncoupled structural behaviour 

of the model, where the results of the pioneering papers in this area have been revisited and 

their accuracy improved.  

In the second part of the paper, a fully coupled structural-acoustic analysis has been 

undertaken, and a number of coupled structural-acoustic modes and a set of structural-

acoustic frequency response functions have been calculated and analysed for different 

positions of a driving force and a receiver. The results obtained at different positions 

demonstrate that, depending on the position of a driving force and a receiver, the resulting 

frequency response functions can be significantly reduced in certain frequency intervals. 
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