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Abstract

Torsional wave propagation in carbon nanotube bundle structures has been analyzed with Nonlocal

Strain Gradient Theory. Governing equation of motion of carbon nanotube bundles have been derived. Phase

and group velocity relations have been obtained. Elastic medium has been considered as a matrix material

between the nanotubes. E�ect of nonlocal stress and strain gradient parameters and sti�ness of elastic medium

to the torsional wave frequency and phase and group velocities have been investigated. Present results could

be useful in designing of composite materials for vibration isolators.
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Ðàñïðîñòðàíåíèå êðóòèëüíûõ âîëí â ïó÷êàõ óãëåðîäíûõ íàíîòðóáîê

Àðäà Ì.1

1Ê.ò.í., Óíèâåðñèòåò Òðàêüÿ, ôàêóëüòåò ìàøèíîñòðîåíèÿ, Ýäèðíå, Òóðöèÿ

Àííîòàöèÿ

Ðàñïðîñòðàíåíèå êðóòèëüíûõ âîëí â ñòðóêòóðàõ ïó÷êà óãëåðîäíûõ íàíîòðóáîê áûëî
ïðîàíàëèçèðîâàíî ñ ïîìîùüþ Íåëîêàëüíîé òåîðèè ãðàäèåíòà äåôîðìàöèè. Ïîëó÷åíî óïðàâëÿþùåå
óðàâíåíèå äâèæåíèÿ ïó÷êîâ óãëåðîäíûõ íàíîòðóáîê. Ïîëó÷åíû ñîîòíîøåíèÿ ôàçîâûõ è ãðóïïîâûõ
ñêîðîñòåé. Óïðóãàÿ ñðåäà ðàññìàòðèâàëàñü êàê ìàòðè÷íûé ìàòåðèàë ìåæäó íàíîòðóáêàìè. Èññëåäîâàíî
âëèÿíèå ïàðàìåòðîâ íåëîêàëüíîãî íàïðÿæåíèÿ è ãðàäèåíòà äåôîðìàöèè, à òàêæå æåñòêîñòè óïðóãîé
ñðåäû íà ÷àñòîòó êðóòèëüíûõ âîëí, à òàêæå ôàçîâûå è ãðóïïîâûå ñêîðîñòè. Ïðåäñòàâëåííûå ðåçóëüòàòû
ìîãóò áûòü ïîëåçíû ïðè ïðîåêòèðîâàíèè êîìïîçèöèîííûõ ìàòåðèàëîâ äëÿ âèáðîèçîëÿòîðîâ.

Êëþ÷åâûå ñëîâà: óãëåðîäíûå íàíîòðóáêè, ðàñïðîñòðàíåíèå âîëí, êðóòèëüíûå âîëíû,

ãðàäèåíò íåëîêàëüíîé äåôîðìàöèè.

Introduction

Carbon nanotubes (CNTs) have become a popular material for the last 20 years.
Concept of designing a structure with superior properties have been getting attention of both
industry and scientists. CNT bundles consist of N number of nanotubes which they can be
wrapped to each other or can be embedded in a matrix material. CNT bundle structures could
be used as nano-wires or nano-�bers in composites. Torsion in CNT bundles must be analyzed
especially for the nano-wire applications of CNTs [1�3].

Nanoscale structures can be modeled with continuum theories. Di�erently from the
macroscale mechanics, small scale e�ect can not be ignored in the nano-scale analysis. Strain
[4, 5] and stress [6, 7] gradient nonlocal theories include the size e�ect and they have been used
in most of the recent research about modeling of CNTs. Recently, Lim et al. [8, 9] proposed
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a nonlocal strain gradient model which considers both stress and strain gradient e�ects of an
interval on a point in the continuum media.

Torsional characteristics of CNTs have been investigated by researchers over the years.
Atomic simulation studies of ideal torsional properties of CNTs carried out in several studies
[10�14]. Torsional vibration response of double-walled CNT structures [15], under the initial
compression load [16] and buckyball attached to the free end [17] were studied. Theoretical
modeling of torsional vibration of CNTs were obtained by using modi�ed couple-stress theory
[18], nonlocal elasticity theory [19] and strain gradient theory [20]. Torsional instability of
CNTs has been also investigated in several papers [21�24]. Molecular dynamics modeling and
analysis for torsional behavior of nanotubes [25�27] were studied comparatively with analytical
results. Nonlocal torsional wave propagation in circular nanostructures [28] and multi-walled
CNTs [29] were also investigated.

Li et al. [30, 31] pointed out that, both torsional enhancing and weakening e�ects in
nonlocal theories are possible and correct. In a similar fashion, nonlocal strain gradient models
were used in torsional wave propagation [32] and vibration [33, 34] of CNTs. Also newly
developed nonlocal integral elasticity model has been used in analysis of torsional dynamics of
CNTs [35, 36].

According to authors' best knowledge, torsional wave propagation in CNT bundle
structures have not been investigated yet according to literature search. Therefore, torsional
wave propagation in CNT bundle structures is studied using the nonlocal strain gradient
theory. Elastic matrix material has been considered between the nanotubes in modeling. Wave
propagation results are obtained for various parameters and velocities.

1. Analysis

1.1. Single CNT

A rod which has length (L) and diameter (d) is considered. The equation of motion in
the angular direction can be written as [37]:

GIP
∂2Θ

∂x2
= ρIP

∂2Θ

∂t2
+ T (1)

where G is the shear modulus, ρ is the density, IP is the polar moment of inertia, Θ is the
angular displacement of CNT and T is the distributed circumferential external torque. The IP
is de�ned as:

IP = π
(R4

2 −R4
1)

2
(2)

where R1 and R2 are the inner and outer radius of CNT respectively.

1.2. CNT Bundle

In CNT Bundle case, N number stacked nanotube which are embedded in an elastic
matrix material assumed as shown in Fig. 1. The circumferential deformation of each nested
tube is a�ected by elastic matrix material.
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Fig. 1. CNT Bundle Structure [38]

The equations of motion of N number of tubes can be written by applying Eq. (1) for
each tube:

T1 = GIP
∂2Θ1

∂x2
− ρIP

∂2Θ1

∂t2
(3a)

Ti = GIP
∂2Θi

∂x2
− ρIP

∂2Θi

∂t2
(3b)

TN = GIP
∂2N

∂x2
− ρIP

∂2ΘN

∂t2
(3c)

where Θi (i = 1,2,...,N) is the angular displacement of the ith nanotube and the subscripts
1,2,...,N are used to denote the order of the nanotube. Ti is the total circumferential torque
due to elastic matrix e�ect.

Fig. 2. Continuum Model of the One Dimensional CNT Bundle System

The torque relation due to elastic medium between nanotubes can be expressed as
(Fig. 2):

T1 = k(Θ1 −Θ2) (4a)
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Ti = k(2Θi −Θi+1 −Θi−1) (4b)

TN = k(ΘN −ΘN−1) (4c)

where k is the sti�ness of elastic matrix. CNT bundle system is consist of two carbon nanotubes
with identical chirality's and they are covered with elastic medium (Fig. 1).

1.3. Nonlocal Strain Gradient Elasticity

The integral form of nonlocal stress relation can be written as [8, 39]:

σij = Cijkl

∫
V

α0(|x− x′|,e0a)ε′kldV (5a)

σ
(1)
ijm = (e2a)2Cijkl

∫
V

α1(|x− x′|,e1a)ε′kl,mdV (5b)

where σij is the nonlocal stress tensor, σ
(1)
ijm is the high-order nonlocal stress tensor, e0a and

e1a are nonlocal parameters which are related to nonlocal stress gradient �eld, e2a is the
material length scale parameter which is related to nonlocal strain gradient �eld. Material
length scale parameters can be assumed as e0 = e1 for the rod type structures. α0(|x− x′|,e0a)
and α1(|x − x′|,e1a) are the nonlocal kernel functions for the classical stress tensor and the
higher order stress tensor, respectively. Nonlocal kernel functions satisfy the conditions in
Eringen [39]. The nonlocal strain gradient theory states the total stress tensor accounts for
both nonlocal and strain gradient tensors:

tij = σij ±
∂

∂x
σ
(1)
ijm (6)

In. Eq. (6), sign of the higher order stress tensor can be assumed negative or positive.
Generally, strain gradient models have sti�ening e�ect on structure with negative higher order
stress tensor. In the other hand, positive higher order stress tensor shows softening e�ect on
strain gradient structure same as nonlocal stress gradient. Both parameters can a�ect the
structure in sti�ening or softening way depending on their negative or positive sign [40, 41].
Because of the lattice dynamics model of the elastic carbon nanotube structure predicts that
travelling wave frequency in CNT structure decreases, softening strain gradient approach is
used in the present study. Comparison of strain gradient rod models can be seen in Fig. 3.

1.4. Equation of Motion

The equation of motion and boundary conditions for torsional deformation of CNT are
obtained using the Hamilton Principle and Nonlocal Strain Gradient Elasticity. The Hamilton
Principle can be written as: ∫ t2

t1

[δW + δEK − δEP ]dt = 0 (7)

where W denotes the work done by the elastic medium, EK denotes the kinetic energy and EP

denotes the potential energy of the CNT. They are de�ned as [42, 43]:

W =

∫ L

0

TΘdx (8a)
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EK =

∫ L

0

ρIP

(
∂Θ

∂t

)2

dx (8b)

EP =

∫ L

0

GIP

(
∂Θ

∂x

)2

dx (8c)

Fig. 3. Variation of Torsional Wave Frequency with Various Models

IfW , EK and EP are de�ned according to the nonlocal strain gradient elasticity theory
and variational principle, following equations are obtained:

δW =

∫ t2

t1

∫ L

0

TδΘdxdt+

∫ t2

t1

∫ L

0

∂

∂x
(e0a)2

∂T

∂x
δΘdxdt (9a)

δEK =

∫ L

0

∫ t2

t1

∂

∂t

[
ρIP

(
∂Θ

∂t

)]
δΘdtdx+

∫ t2

t1

∫ L

0

∂

∂x

[
(e0a)2ρIP

(
∂3Θ

∂x∂t2

)]
δΘdxdt (9b)

δEP =

∫ t2

t1

∫ L

0

∂

∂x

[
GIP

(
∂Θ

∂x

)]
δΘdxdt+

∫ t2

t1

∫ L

0

∂2

∂x2

[
(e2a)2GIP

(
∂2Θ

∂x2

)]
δΘdxdt (9c)

If Eq. (7) is rearranged according to Eqs. (9a)-(9c), Eq. (10) is obtained:
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{∫ t2
t1

∫ L

0
TδΘdxdt

}
+

{
−
∫ t2
t1

∫ L

0

∂

∂x
(e0a)2

∂T

∂x
δΘdxdt+

∫ t2
t1

[
(e0a)2

∂T

∂x

]
[δΘ(L)−

− δΘ(0)] dt}+

{
−
∫ L

0

∫ t2
t1

∂

∂t

[
ρIP

(
∂Θ

∂t

)]
δΘdtdx+

∫ L

0

[
ρIP

(
∂Θ

∂t

)]
[δΘ(t2)− δΘ(t1)] dx

}
−

−
{∫ t2

t1

∫ L

0

∂2

∂x∂t

[
µρIP

(
∂2Θ

∂x∂t

)]
δΘdtdx−

∫ t2
t1

[
µρIp

(
∂3Θ

∂x∂t2

)]
[δΘ(L)− δΘ(0)] dt

}
−

−
{
−
∫ t2
t1

∫ L

0

∂

∂x

[
GIP

(
∂Θ

∂x

)]
δΘdtdx+

+
∫ t2
t1

[
GIP

(
∂Θ

∂x

)]
[δΘ(L)− δΘ(0)] dt−

∫ t2
t1

∫ L

0

∂2

∂x2

[
(e2a)2GIP

(
∂2Θ

∂x2

)]
δΘdtdx−

−
∫ t2
t1

[
(e2a)2GIP

(
∂2Θ

∂x2

)][
∂δΘ(L)

∂x
− ∂δΘ(0)

∂x

]
dt+

∫ t2
t1

[
(e2a)2GIP

(
∂3Θ

∂x3

)]
[δΘ(L) −

− δΘ(0)] dt} = 0
(10)

If Eq. (10) is reorganized, following equation is obtained:

∫ t2
t1

∫ L

0

{
T −

[
(e0a)2

(
∂2T

∂x2

)]
−
[
ρIP

(
∂2Θ

∂t2

)]
+

[
µρIP

(
∂4Θ

∂x2∂t2

)]
+

[
GIP

(
∂2Θ

∂x2

)]
+

+ (e2a)2GIP

(
∂4Θ

∂x4

)}
δΘdtdx+

∫ t2
t1

{[
(e0a)2

(
∂T

∂x

)]
−
[
µρIP

(
∂3Θ

∂x∂t2

)]
−
[
GIP

(
∂Θ

∂x

)]
−

−
[
(e2a)2GIP

(
∂3Θ

∂x3

)]}
[δΘ(L)− δΘ(0)] dt+

∫ t2
t1

[
(e2a)2GIP

(
∂2Θ

∂x2

)][
∂δΘ(L)

∂x
−

− ∂δΘ(0)

∂x

]
dt = 0

(11)

According to Eq. (11), the governing equation of motion of a CNT can be written as:

GIP

(
∂2Θ

∂x2

)
+ (e2a)2GIP

(
∂4Θ

∂x4

)
= ρIP

(
∂2Θ

∂t2

)
− (e0a)2ρIP

(
∂4Θ

∂x2∂t2

)
+ T−

−(e0a)2
(
∂2T

∂x2

) (12)

and the boundary conditions are obtained as:

[
(e0a)2

(
∂T

∂x

)
− µρIP

(
∂3Θ

∂x∂t2

)
−GIP

(
∂Θ

∂x

)
− (e2a)2GIP

(
∂3Θ

∂x3

)]
[δΘ] = 0 (13a)
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[
−(e2a)2GIP

(
∂2Θ

∂x2

)][
∂δΘ

∂x

]
= 0 (13b)

Eq. (12) is the governing equation of the nonlocal strain gradient CNT for the torsional
deformation. If the nonlocal parameter is assumed as zero (e0 = 0), the strain gradient rod
model is obtained. If the strain gradient parameter is assumed as zero (e2 = 0), the nonlocal
rod model is obtained. If the nonlocal and strain gradient parameters are assumed as zero
(e0 = e2 = 0), classical rod model is obtained. If Eqs. (3) and (4) are inserted into Eq. (12),
the equations of motion for CNT bundle is obtained as:

GIP
∂2Θ1

∂x2
+ (e2a)2GIP

∂4Θ1

∂x4
= ρIP

∂2Θ1

∂t2
− (e0a)2ρIP

∂4Θ1

∂x2∂t2
+ k(Θ1 −Θ2)−

−(e0a)2k

(
∂2Θ2

∂x2
− ∂2Θ1

∂x2

) (14a)

GIP
∂2Θi

∂x2
+ (e2a)2GIP

∂4Θi

∂x4
= ρIP

∂2Θi

∂t2
− (e0a)2ρIP

∂4Θi

∂x2∂t2
+ k(2Θ(i) −Θ(i+1)−

−Θ(i−1))− (e0a)2k

(
2
∂2Θ(i)

∂x2
−
∂2Θ(i+1)

∂x2
−
∂2Θ(i−1)

∂x2

) (14b)

GIP
∂2ΘN

∂x2
+ (e0a)2GIP

∂4ΘN

∂x4
= ρIP

∂2ΘN

∂t2
− (e2a)2ρIP

∂4ΘN

∂x2∂t2
+ k(Θ(N) −Θ(N−1))−

−(e0a)2k

(
∂2Θ(N)

∂x2
−
∂2Θ(N−1)

∂x2

) (14c)

For the harmonic torsional wave propagation, displacement of each tube can be written
as:

Θi(x,t) = Aie
j(ωt−mx) (15)

where ω is the torsional wave frequency,m is circumferential wave number and j2 = −1.
Inserting Eq. (15) into Eqs. (14a)-(14c) leads to:

P11 P12 P13 ... ... ... P1i

P21 P22 P23 ... ... ... P2i

· · · · ·
· · · · ·
· · · · ·
· · · · ·

PN1 PN2 PN3 ... ... ... PNN





A1

A2

·
·
·

AN−1
AN


= 0 (16)

where ψi is the amplitude of the i
th tube and related terms are de�ned in Eqs. (17a)-

(17c):

P11 = m4(e2a)2GIP −m2(GIP − (e0a)2ρIPω
2 + (e0a)2k) + (ρIPω

2 − k)

P12 = m2(e0a)2k + k

P13 = P14 = ... = P1i = 0

(17a)
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Pi(i−1) = Pi(i+1) = m2(e0a)2k + k

Pii = m4(e2a)2GIP −m2(GIP − (e0a)2ρIPω
2 + 2(e0a)2k) + (ρIPω

2 − 2k)

Pi1 = ... = Pi(i−3) = Pi(i−2) = Pi(i+2) = Pi(i+3) = ... = PiN = 0

(17b)

PNN = m4(e2a)2GIP −m2(GIP − (e0a)2ρIPω
2 + (e0a)2k) + (ρIPω

2 − k)

P(N−1)N = m2(e0a)2k + k

PN1 = PN2 = PN(N−2)... = 0

(17c)

The determinant of the coe�cient matrix in Eq. (16) must be equal to zero. If the
determinant equation is solved for ω, the torsional wave frequencies for N-nanotube bundle
system are obtained.

Phase velocity (νP ) is the velocity of an individual particle which propagates in the
structure and it is related only with the wavenumber, not any physical quantity (Eq. (18a)).
Group velocity (νG) de�nes overall shape of the propagation of a group of waves at similar
frequency and can be obtained using Eq. (18b).

νP =
ω

k
(18a)

νG =
dω

dk
(18b)

2. Numerical Results and Discussion

In this section, validation of present model has been achieved, �rstly. After that,
variation of torsional wave frequency and phase and group velocities with various parameters
have been investigated for the N=10 number of CNTs.

Numerical results for the torsional wave frequency analysis are obtained by assuming
material constants: G = 0,46TPa, ρ = 4962kg/m3. Various studies can be found about the
determination of elastic properties and e�ective wall thickness of nanotubes. Inner radius of
CNTs is chosen as 0,68 nm and thickness of CNT is accepted as 0,132 nm, respectively [44, 45].

An atomic lattice model for torsional wave propagation in SWCNT was proposed in
previous study [37]. Frequency equations for Lattice Dynamic and Nonlocal Strain Gradient
theories can be obtained as below:

ωLD = 2
c

a

√
sin2

(ma
2

)
(19a)

ωNLSG = cm

√
1− (e2a)2m2

1 + (e0a)2m2
(19b)

where c is the shear speed of sound (c =
√
G/ρ).

Variation of torsional wave frequency with wave number is seen in Fig. 4. The local
frequency increases linearly with wave number. According to Lattice Dynamics, a travelling
wave has a limit propagation velocity. The strain gradient (e2 = 0,25) and nonlocal (e0 = 0,39)



NOISE Theory and Practice 15

models show good agreement with the lattice dynamics results for the end of �rst Brillouin-
Zone. Nonlocal strain gradient model gives almost identical results with lattice dynamics model
for the selected parameters (e0 = 0,20, e2 = 0,21).

Fig. 4. Variation of Torsional Wave Frequency with Wave Number for Various Models

E�ect of the elastic medium in torsional wave frequency is seen in Figs. 5 and 6. For
the 1st CNT, elastic medium has no e�ect on torsional wave frequency. With the increasing
number of CNTs, elastic medium becomes more e�ective and torsional wave frequency raises.
E�ect of the number of carbon nanotubes and elastic medium are more pronounced in small
wave numbers (long wavelengths).

Fig. 5. E�ect of Wave Number on Torsional Wave Frequency for Various Elastic Medium
Sti�ness's
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Fig. 6. E�ect of Elastic Medium on Torsional Wave Frequency for Various Wave Numbers

In Figs. 7 and 8, variation of phase and group velocities for the 1st and 10th CNT
can be seen. Number of CNT increases both phase and group velocity. Elastic medium is
e�ective only in small interval at low frequencies (long wavelengths) for the 1st CNT. With the
increasing number of CNT, e�ective frequency interval of group velocity is expanded. Elastic
medium e�ect vanishes at high wave numbers (short wavelengths), because of the nonlocal
strain gradient model. Phase and group velocities has not been a�ected by elastic medium at
the end of �rst Brillouin Zone and show identically same characteristics.

Fig. 7. Variation of Phase and Group Velocity of 1st CNT
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Fig. 8. Variation of Phase and Group Velocity of 10st CNT

Conclusion

Torsional wave propagation in multiple CNTs stacked in an elastic matrix which is
called CNT bundle has been investigated in the present study. Governing equation of motion
has been obtained using Nonlocal Strain Gradient Elasticity Theory Torsional wave propagation
frequencies, phase and group velocities for �rst and last CNTs have been determined. E�ects
of gradient parameters and sti�ness of elastic medium have been investigated comparatively.

The nonlocal strain gradient elasticity model is more acceptable for CNTs rather than
the only stress or strain gradient and classical theories. Elastic medium has more pronounce
e�ect on wave frequency especially for increasing number of nanotubes. Group velocity
e�ectiveness expands with increasing elastic medium sti�ness and number of nanotubes.

Present results may be useful for modeling of composite materials for vibration
isolators.
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