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Torsional Wave Propagation in Carbon Nanotube Bundles

Arda M.}
'PhD, Trakya University, Department of Mechanical Engineering, Edirne, Turkey

Abstract

Torsional wave propagation in carbon nanotube bundle structures has been analyzed with Nonlocal
Strain Gradient Theory. Governing equation of motion of carbon nanotube bundles have been derived. Phase
and group velocity relations have been obtained. Elastic medium has been considered as a matrix material
between the nanotubes. Effect of nonlocal stress and strain gradient parameters and stiffness of elastic medium
to the torsional wave frequency and phase and group velocities have been investigated. Present results could
be useful in designing of composite materials for vibration isolators.

Key words: carbon nanotubes, wave propagation, torsional waves, nonlocal strain gradient.

Pacnpocrpasenne KpyTHJIbHBIX BOJIH B My9Kax YIJIE€POJHBIX HAHOTPYBGOK
Apna M.

VK. 1.n., Yausepcurer Tpakbsi, pakyapTeT MaIIHHOCTDpOCHNs, Dqupae, T ST
, P p , Y. P , JAUPHE, 1YDIL

AnHOTanMA

Pacopocrpanerne KpPYTHJIBHBIX BOJH B CTPYKTypax Iy9Ka YIJIEDOJHBIX HAHOTPYOOK OBLIO
mpoaHan3upOBaHO ¢ momoipio HemokanpHOi Teopun rpasgmenta gegpopmanmn. IlogydeHo ympasJisioniee
YDaBHEHHe JBIKEHHsI Iy9KOB YTJIEPOAHBIX HAHOTPYOOK. Ilosydenpr coorHomeHnss (ha30BbIX H T'DYIMIIOBBIX
CKOpocTeli. Yupyrasi cpeja paccMaTpHBaJIach KaK MATPUIHBIN MaTepua Mex 1y HaHorpybokavu. HccirenoBano
BJIHSIHOE [IaPAMETPOB HEJIOKAJbHOI'O HAIPSKEHHs] U I'PajueHTa gepopMalinn, a TakXKe XKeCTKOCTH YIIPYI'OH
CPeIbI Ha 9aCTOTY KPYTHJIBHBIX BOJIH, & TaK>Ke (pa30Bble U IPYHIOBBIe CKOpOocTH. IIpencraBieHHbIe pe3yIbTaTh
MOryT OBITH ITOJIE3HBI IPH MPOEKTHPOBAHUH KOMITO3HIIHOHHBIX MATEPUAJIOB JJIsT BHDPOU30/ISTTOPOB.

KuroueBbre cjioBa:  yriepoJHbIE HAHOTPYOKH, DACHPOCTPAHEHHE BOJIH, KPYTHUJIbHBIE BOJIHBI,

rpaJueHT HeJIOKaJbHOMH jeopmMaliim.

Introduction

Carbon nanotubes (CNTs) have become a popular material for the last 20 years.
Concept of designing a structure with superior properties have been getting attention of both
industry and scientists. CNT bundles consist of N number of nanotubes which they can be
wrapped to each other or can be embedded in a matrix material. CNT bundle structures could
be used as nano-wires or nano-fibers in composites. Torsion in CNT bundles must be analyzed
especially for the nano-wire applications of CN'Ts [1-3].

Nanoscale structures can be modeled with continuum theories. Differently from the
macroscale mechanics, small scale effect can not be ignored in the nano-scale analysis. Strain
[4, 5] and stress |6, 7] gradient nonlocal theories include the size effect and they have been used
in most of the recent research about modeling of CNTs. Recently, Lim et al. [8, 9] proposed
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a nonlocal strain gradient model which considers both stress and strain gradient effects of an
interval on a point in the continuum media.

Torsional characteristics of CN'Ts have been investigated by researchers over the years.
Atomic simulation studies of ideal torsional properties of CNTs carried out in several studies
[10-14]. Torsional vibration response of double-walled CNT structures [15], under the initial
compression load [16] and buckyball attached to the free end [17] were studied. Theoretical
modeling of torsional vibration of CNTs were obtained by using modified couple-stress theory
[18], nonlocal elasticity theory [19] and strain gradient theory [20]. Torsional instability of
CNTs has been also investigated in several papers [21-24]. Molecular dynamics modeling and
analysis for torsional behavior of nanotubes [25-27] were studied comparatively with analytical
results. Nonlocal torsional wave propagation in circular nanostructures [28] and multi-walled
CNTs [29] were also investigated.

Li et al. [30, 31| pointed out that, both torsional enhancing and weakening effects in
nonlocal theories are possible and correct. In a similar fashion, nonlocal strain gradient models
were used in torsional wave propagation [32] and vibration [33, 34] of CNTs. Also newly
developed nonlocal integral elasticity model has been used in analysis of torsional dynamics of
CNTs 35, 36].

According to authors’ best knowledge, torsional wave propagation in CNT bundle
structures have not been investigated yet according to literature search. Therefore, torsional
wave propagation in CNT bundle structures is studied using the nonlocal strain gradient
theory. Elastic matrix material has been considered between the nanotubes in modeling. Wave
propagation results are obtained for various parameters and velocities.

1. Analysis
1.1. Single CNT

A rod which has length (L) and diameter (d) is considered. The equation of motion in
the angular direction can be written as [37]:
2 2
where G is the shear modulus, p is the density, Ip is the polar moment of inertia, © is the
angular displacement of CNT and T is the distributed circumferential external torque. The Ip
is defined as:

I — W@ 2)

where R; and R, are the inner and outer radius of CNT respectively.

1.2. CNT Bundle

In CNT Bundle case, N number stacked nanotube which are embedded in an elastic
matrix material assumed as shown in Fig. 1. The circumferential deformation of each nested
tube is affected by elastic matrix material.
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Fig. 1. CNT Bundle Structure [38]

The equations of motion of N number of tubes can be written by applying Eq. (1) for
each tube:

0?0, 0?0,

Tl = GIPW - pIp 8t2 (3(1,)
%0, 0?0,

Ti=Glrgm — v p (30)
O*N 9*©

TN = GIPW — pIPTQN (30)

where ©; (i = 1,2,...,N) is the angular displacement of the i*" nanotube and the subscripts
1,2,....N are used to denote the order of the nanotube. T; is the total circumferential torque
due to elastic matrix effect.
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Fig. 2. Continuum Model of the One Dimensional CNT Bundle System

The torque relation due to elastic medium between nanotubes can be expressed as
(Fig. 2):

T1 = k(@l - @2) (40,)



Arda M.

Torsional Wave Propagation in Carbon Nanotube Bundles 10
T; = k(20; — ;41 — 6;_1) (4b)
TN = k)(@N - @N—l) (40)

where £ is the stiffness of elastic matrix. CNT bundle system is consist of two carbon nanotubes
with identical chirality’s and they are covered with elastic medium (Fig. 1).

1.3. Nonlocal Strain Gradient Elasticity

The integral form of nonlocal stress relation can be written as [8, 39):

Uij = Cijkl /V Oé()(|ZE — I/|,€0a)€;€ldv (5@)

ai(;?)n = (e20)*Ciju /V o (Jx — 2'|,e1a)eyy ,, dV (5b)
where o;; is the nonlocal stress tensor, O'S)n is the high-order nonlocal stress tensor, epa and
era are nonlocal parameters which are related to nonlocal stress gradient field, esa is the
material length scale parameter which is related to nonlocal strain gradient field. Material
length scale parameters can be assumed as ey = e; for the rod type structures. ag(|x — 2'|,e0a)
and «q(|z — 2'|,e;a) are the nonlocal kernel functions for the classical stress tensor and the
higher order stress tensor, respectively. Nonlocal kernel functions satisfy the conditions in
Eringen [39]. The nonlocal strain gradient theory states the total stress tensor accounts for
both nonlocal and strain gradient tensors:

tij = oy & %07,(]17)71 (6)
In. Eq. (6), sign of the higher order stress tensor can be assumed negative or positive.
Generally, strain gradient models have stiffening effect on structure with negative higher order
stress tensor. In the other hand, positive higher order stress tensor shows softening effect on
strain gradient structure same as nonlocal stress gradient. Both parameters can affect the
structure in stiffening or softening way depending on their negative or positive sign [40, 41].
Because of the lattice dynamics model of the elastic carbon nanotube structure predicts that
travelling wave frequency in CN'T structure decreases, softening strain gradient approach is
used in the present study. Comparison of strain gradient rod models can be seen in Fig. 3.

1.4. Equation of Motion

The equation of motion and boundary conditions for torsional deformation of CN'T are
obtained using the Hamilton Principle and Nonlocal Strain Gradient Elasticity. The Hamilton
Principle can be written as:

[2)
/ W + 6Fx — 0Bpldt = 0 (7)

t1

where W denotes the work done by the elastic medium, Ej denotes the kinetic energy and Ep
denotes the potential energy of the CNT. They are defined as [42, 43|:

L
W:/ TOdx (8a)
0
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Fig. 3. Variation of Torsional Wave Frequency with Various Models

If W, Ex and Ep are defined according to the nonlocal strain gradient elasticity theory
and variational principle, following equations are obtained:

W = / / T(S@dxdt—i-/ / Ep (eoa) —5@da:dt (9a)
X
L 2 g 00 2L g ) 2’0

SEp = / / o [G}P( )}mdmw / / {eQa 2GIp (??)}5@@& (9¢)

If Eq. (7) is rearranged according to Eqs. (9a)-(9¢), Eq. (10) is obtained:
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{ 2 Td@dmdt} +{ ) g—é@dxdtJr I { gﬂ [90(L)~

PEY0) dt}+{ Iy I 5 [ (%(j)} 50dtdr + [ [p]p (8@?)} 60(ts) — 5O(t1)] dx} -

{ * [y aa‘;t {up P ( g;?t)] 50dtdx — [ [,up[p (%)] 66(L) — 66(0)] dt} -

- 90
_{_ e [GIP( - )}6@dtd:p+

+ [ {GIP (?}i)} [0O(L) — 66(0 2y 8622 {eQa GIp ( o )} §Odtdz—
o (- g (S
— 60(0)]dt} =0

(10)
If Eq. (10) is reorganized, following equation is obtained:

= o (5)] = e (52)] + oo (5) | = o0 (52 +
N I I R
_ [(eza)zafp (?)37?)} } 60(L) — 60(0)] dt + [ [(eza)mfp @zf)} [852@_

- 85@(0)1 o

' (1)

According to Eq. (11), the governing equation of motion of a CNT can be written as:
loals) e oals) 0'e
G_[p (a 2) + (QQG)ZGIP <w> = p.[p (ﬁ) - (60@)2PIP (W) + T—

and the boundary conditions are obtained as:

o (20) ot (22) a0 (%)~ cmrone (28) o1 =0 qam



NOISE Theory and Practice 13

o (22)] [2€] 4 s

Eq. (12) is the governing equation of the nonlocal strain gradient CNT for the torsional
deformation. If the nonlocal parameter is assumed as zero (e¢y = 0), the strain gradient rod
model is obtained. If the strain gradient parameter is assumed as zero (es = 0), the nonlocal
rod model is obtained. If the nonlocal and strain gradient parameters are assumed as zero
(eg = ez = 0), classical rod model is obtained. If Eqgs. (3) and (4) are inserted into Eq. (12),
the equations of motion for CNT bundle is obtained as:

0?0, 010, 0?0, 010,
Clr g +(20) Gl = Pl = (con) ple g g + (O = €2)
0?0, 0?0 (14a)
—(epa)’k z L
Ox? Ox?
0%0; 9'e; 0%0; 0'0;
Glp 922 + (e20)*Glp—— ot = plp I (eoa)QpIpa 257 + k(20) — Oyt1)—
0?0 9?0 0?0 (140)
—O, ) — 21 9 @) _ i+ (i—1)
@(z 1)) (60a) k( Or2 o2 72
9?0 0'e 0?0 'Oy
Glp=g o+ 4 (e0a)*Glp =5 = plp= 5= — (e20)*plp o + k(O) — Ov-1)—
(14c)

P"Ow) _ 0wy
—(eoa)Qk( or2 a2 )

For the harmonic torsional wave propagation, displacement of each tube can be written
as:

@xl’,t) = Aiej(wt—mx) (15)

where w is the torsional wave frequency, m is circumferential wave number and j? = —1.
Inserting Eq. (15) into Eqs. (14a)-(14c) leads to:

_Pll P12 P13 Pli Al
P21 P22 P23 Pgi AQ
=0 (16)
) ) ) ) ) An_y
_PNl PN2 PN3 PNN_ L AN i

where 1; is the amplitude of the i*" tube and related terms are defined in Eqs. (17a)-
(17c):

Py = m*(e2a)?GIp — m*(Glp — (ega)?plpw? + (epa)?k) + (plpw? — k)
Py = m?(epa)’k + k (17a)

P13:P14:...:PM':0
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Pyi—1y = Pyiv1) = m*(eoa)*k + k
Py = m*(e3a)*Glp — m*(GIp — (epa)?plpw? + 2(epa)?k) + (plpw? — 2k) (170)

Py = ... = Pyi—3) = Piti—2) = Bitiva) = Piiys)y = ... = Pin =0

Pyy = m*(e2a)*GIp — m?(GIp — (epa)?plpw? + (ega)?k) + (plpw? — k)
P(N—l)N = m2(60a)2k} + k (176)
PNl - PN2 - PN(N*Q) - 0

The determinant of the coefficient matrix in Eq. (16) must be equal to zero. If the
determinant equation is solved for w, the torsional wave frequencies for N-nanotube bundle
system are obtained.

Phase velocity (vp) is the velocity of an individual particle which propagates in the
structure and it is related only with the wavenumber, not any physical quantity (Eq. (18a)).
Group velocity (vg) defines overall shape of the propagation of a group of waves at similar
frequency and can be obtained using Eq. (18b).

w

VP =1 (18a)
dw
Vg = % (186)

2. Numerical Results and Discussion

In this section, validation of present model has been achieved, firstly. After that,
variation of torsional wave frequency and phase and group velocities with various parameters
have been investigated for the N=10 number of CNTs.

Numerical results for the torsional wave frequency analysis are obtained by assuming
material constants: G = 0,467 Pa, p = 4962kg/m?>. Various studies can be found about the
determination of elastic properties and effective wall thickness of nanotubes. Inner radius of
CNTs is chosen as 0,68 nm and thickness of CNT is accepted as 0,132 nm, respectively |44, 45].

An atomic lattice model for torsional wave propagation in SWCNT was proposed in
previous study [37]. Frequency equations for Lattice Dynamic and Nonlocal Strain Gradient
theories can be obtained as below:

c ma
— 95 [sin? (—) 19
WLp —y/sin” (5 (19a)
1 — (exa)*m?

(19b)

w =cmy| —————
NESG 1+ (epa)?m?
where c is the shear speed of sound (c = /G/p).

Variation of torsional wave frequency with wave number is seen in Fig. 4. The local
frequency increases linearly with wave number. According to Lattice Dynamics, a travelling
wave has a limit propagation velocity. The strain gradient (e; = 0,25) and nonlocal (eq = 0,39)
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models show good agreement with the lattice dynamics results for the end of first Brillouin-
Zone. Nonlocal strain gradient model gives almost identical results with lattice dynamics model
for the selected parameters (e = 0,20, es = 0,21).

Fig. 4. Variation of Torsional Wave Frequency with Wave Number for Various Models
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Effect of the elastic medium in torsional wave frequency is seen in Figs. 5 and 6. For
the 1% CNT, elastic medium has no effect on torsional wave frequency. With the increasing
number of CN'Ts, elastic medium becomes more effective and torsional wave frequency raises.
Effect of the number of carbon nanotubes and elastic medium are more pronounced in small

wave numbers (long wavelengths).

Fig. 5.
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Fig. 6. Effect of Elastic Medium on Torsional Wave Frequency for Various Wave Numbers

In Figs. 7 and 8, variation of phase and group velocities for the 1% and 10th CNT
can be seen. Number of CNT increases both phase and group velocity. Elastic medium is
effective only in small interval at low frequencies (long wavelengths) for the 15 CNT. With the
increasing number of CNT, effective frequency interval of group velocity is expanded. Elastic
medium effect vanishes at high wave numbers (short wavelengths), because of the nonlocal
strain gradient model. Phase and group velocities has not been affected by elastic medium at
the end of first Brillouin Zone and show identically same characteristics.
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Fig. 8. Variation of Phase and Group Velocity of 105* CNT

Conclusion

Torsional wave propagation in multiple CNTs stacked in an elastic matrix which is
called CNT bundle has been investigated in the present study. Governing equation of motion
has been obtained using Nonlocal Strain Gradient Elasticity Theory Torsional wave propagation
frequencies, phase and group velocities for first and last CN'Ts have been determined. Effects
of gradient parameters and stiffness of elastic medium have been investigated comparatively.

The nonlocal strain gradient elasticity model is more acceptable for CNTs rather than
the only stress or strain gradient and classical theories. Elastic medium has more pronounce
effect on wave frequency especially for increasing number of nanotubes. Group velocity
effectiveness expands with increasing elastic medium stiffness and number of nanotubes.

Present results may be useful for modeling of composite materials for vibration
isolators.
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