УДК 534.833.534 ОЕСD 01.03.AA

Вязкоупругие резонаторы

Казаков Л.И.

К.ф.-м.н., ведущий научный сотрудник, Тихоокеанский океанологический институт им. В.И. Ильичёва ДВО РАН, г. Владивосток

Аннотация

Выполнен приближенный расчет акустических характеристик резонаторов в виде вязкоупругих пробок с закрепленными боковыми поверхностями. Рассмотрены 5 основных разновидностей таких резонаторов. Приведены примеры сравнения результатов приближенной и точной теорий и примеры экспериментального подтверждения приближенной теории.

Ключевые слова: вязкоупругие материалы, резонаторы, акустическая проводимость, резонансная частота.

Viscoelastic resonators

Kazakov L.I. K.F.-M.N., leading researcher, Pacific Oceanological Institute named after V.I. Il'ichev FEB RAS, Vladivostok

Abstract

The approximate calculation of acoustic characteristics of resonators in the form of viscoelastic corks with fixed side surfaces is made. 5 main types of such resonators are considered. Examples of comparison of results of approximate and exact theories and examples of experimental confirmation of the approximate theory are given.

Key words: viscoelastic materials, resonators, acoustic conductivity, resonance frequency.

Введение

Ниже получены приближенные расчетные формулы для акустических характеристик вязкоупругих резонаторов, выполненных в виде пробок с закрепленной боковой поверхностью следующих пяти конфигураций: сплошной круглый цилиндр, три разновидности в форме круглого цилиндра с центральным круглым отверстием, крепящиеся либо одной, либо обеими боковыми поверхностями ("внешний", "внутренний" и кольцевой резонаторы, см. рис. 3), прямоугольный в плане резонатор. Состоятельность приближенных формул подтверждена сравнением с результатами точных вычислений и экспериментов.

Любой механический резонатор состоит из массы, упругости и потерь. Всем этим рассматриваемые материалы обладают.

1. Приближенная теория резонаторов

1.1. Вязкоупругие материалы

Категория вязкоупругих материалов охватывает весьма обширный класс веществ, таких как резины, мягкие пластмассы, очень вязкие жидкости (смолы, битумы и пр.), гели, растительные и животные ткани и т.д. Эти вещества занимают промежуточное место между идеально упругими твердыми телами и вязкими несжимаемыми жидкостями, совмещая в себе свойства тех и других.

Однородное изотропное вязкоупругое тело, подобно идеально упругому, характеризуют двумя модулями упругости, например, модулем сдвига μ (Па) и модулем объемного сжатия K (Па) [1, с. 22]. При колебаниях в вязкоупругом теле происходит (как и в вязкой жидкости) диссипация механической энергии за счет внутреннего трения. Поэтому его модули упругости при гармонических колебаниях принципиально комплексные и частотно-зависимые величины [2], [3].

Из двух модулей упругости вязкоупругого материала важнейшим является комплексный модуль сдвига:

$$\mu^*(\omega) = \mu(\omega)[1 - i\eta(\omega)],\tag{1}$$

где ω – круговая частота звука, $\mu(\omega)$ – модуль сдвига, і – мнимая единица, $\eta(\omega)$ – коэффициент сдвиговых потерь. Он резко отличается от модуля всестороннего сжатия *К* следующим. Во-первых, для всех вязкоупругих материалов имеет место соотношение:

$$|\mu^*| \ll K,\tag{2}$$

которое, по-существу, служит определением таких материалов и относит их в разряд "практически несжимаемых", "водоподобных" веществ [4, с. 446]. Во-вторых, частотные зависимости $\mu(\omega)$ и $\eta(\omega)$ наиболее ярко проявляются в диапазоне звуковых и ультразвуковых частот, в то время как модуль объемного сжатия K в этом диапазоне от частоты практически не зависит, а поэтому может считаться действительной упругой константой вещества.

Модули сдвига резин могут отличаться друг от друга в десятки и сотни раз и лежат в пределах $\mu(\omega) = 10^5 \div 10^8$ Па. Коэффициенты сдвиговых потерь резин обычно порядка $\eta(\omega) = 0, 1 \div 1, 0$. У всех вязкоупругих материалов параметры K (Па), плотность ρ (кг/м³), скорость волн сжатия $c_l = (K/\rho)^{1/2}$ (м/с) примерно такие же, как у воды.

На низких частотах, когда высота пробки *h* (м) мала в сравнении с длиной волны сжатия, последней можно пренебречь и считать материал пробки несжимаемым. Это допущение позволяет построить приближенную теорию вынужденных колебаний пробки с закрепленной боковой поверхностью.

Общее уравнение движения однородного изотропного упругого тела можно записать в виде [1, с. 23, 26, 125]:

$$\rho \frac{\partial^2 \vec{U}}{\partial t^2} = \mu \Delta \vec{U} - \frac{3}{2(1+\sigma)} \nabla P, \tag{3}$$

где \vec{U} - вектор деформации среды (м), σ – её коэффициент Пуассона,

$$P = -\frac{\sigma_{ll}}{3} = -\frac{1}{3} \left(\sigma_{xx} + \sigma_{yy} + \sigma_{zz} \right) -$$

звуковое давление (Па). В силу предполагаемой несжимаемости среды:

$$\sigma = \frac{3K - 2\mu}{2(3K + \mu)} \approx \frac{1}{2}.$$

Тогда для гармонических колебаний уравнение (3) примет вид:

$$-i\omega\rho\vec{V} = \frac{i\mu^*}{\omega}\Delta\vec{V} - \nabla P.$$
(4)

По форме это уравнение совпадает с уравнением Навье – Стокса для малых гармонических колебаний вязкой жидкости [5, с. 73, 350], причем роль вязкости здесь играет величина $i\mu^*(\omega)/\omega$. Это указывает на аналогию движений вязкоупругой пробки резонатора и столбика вязкой жидкости в трубе.

Для достаточно высокой пробки можно предположить, что движение происходит только вдоль центральной оси z и $V_z = V_z(x,y)$. Если при этом считать P = P(z), то из уравнения (4) следует постоянство ∇P . Пренебрегая влиянием воздуха над пробкой и присоединенной массой среды (воды) на входе резонатора, появляющейся из-за неравномерности колебательной скорости по сечению пробки, найдем:

$$\frac{dP(z)}{dz} = -\frac{P}{h},$$

где *P* – звуковое давление, действующее снизу на резонатор. В этом случае уравнение (4) примет вид:

$$\Delta V_z + \kappa^2 V_z = \frac{i\omega P}{\mu^* h},\tag{5}$$

или в цилиндрических координатах:

$$\frac{d^2V_z}{dr^2} + \frac{1}{r}\frac{dV_z}{dr} + \kappa^2 V_z = \frac{i\omega P}{\mu^* h}.$$
(6)

Здесь

$$\kappa = \sqrt{\frac{\rho\omega^2}{\mu^*(\omega)}} - \tag{7}$$

комплексное волновое число сдвиговой волны.

1.2. Цилиндрический резонатор

Для цилиндрического резонатора круглого сечения радиуса a уравнение (6) имеет решением:

$$V_z(r) = \frac{P}{i\omega\rho h} \left[\frac{J_o(\kappa r)}{J_0(\kappa a)} - 1 \right],\tag{8}$$

откуда найдем среднюю по сечению пробки продольную скорость:

$$\overline{V_z(r)} = \frac{P}{i\omega\rho h} \left[\frac{2J_1(\kappa a)}{\kappa a J_0(\kappa a)} - 1 \right] = \frac{P}{i\omega\rho h} \frac{J_2(\kappa a)}{J_0(\kappa a)},$$

где $J_n(\kappa a)$ – функции Бесселя. Поэтому для приведенной к воде проводимости цилиндрических резонаторов радиуса a (в предположении аддитивности их проводимостей) получим:

$$Y = \frac{\varepsilon \rho_0 c_0}{i\omega \rho h} \frac{J_2(\kappa a)}{J_0(\kappa a)},\tag{9}$$

где
 ε – доля площади поверхности, занимаемая этими резонаторами;
 ρ_0 – плотность воды, c_0 – скорость звука в воде.

Если в разложении

$$\frac{J_0(x)}{J_2(x)} = \frac{8}{x^2} - \frac{4}{3} - \frac{x^2}{144} - \frac{x^4}{4320} - \dots$$

оставить только два первых члена, то учитывая (1) и (7), представим (9) в приближенном виде:

$$Y(\omega) \approx \frac{\varepsilon \rho_0 c_0 \omega a^2}{8\mu(\omega)h} \frac{-i}{1 - \frac{\omega^2 \mu(\omega_p)}{\omega_p^2 \mu(\omega)} - i\eta(\omega)},\tag{10}$$

где

$$\omega_p = \frac{2.45}{a} \sqrt{\frac{\mu(\omega_p)}{\rho}} - \tag{11}$$

собственная круговая частота цилиндрического резонатора. Значение численного коэффициента здесь можно уточнить, заметив, что при $\eta \ll 1$ собственная частота основного резонанса в формуле (9) будет определяться первым корнем функции $J_0(\kappa a)$, равным 2,405.

Второе приближение к точному значению ω_p получим, если в предыдущем разложении приравняем нулю сумму первых трёх слагаемых: $\frac{8}{(\kappa_p a)^2} - \frac{4}{3} - \frac{(\kappa_p a)^2}{144} = 0$. Решение этого квадратного относительно $(\kappa_p a)^2$ уравнения приведет к формуле (11) с численным коэффициентом 2,413, что превышает точное значение 2,405 всего на 0,34%, т.е. в 5,5 раза точнее начального приближения.

На рис. 1 для цилиндрического резонатора представлены результаты расчета проводимостей по "точной" (9) и приближенной (10) формулам, а также данные измерений на гидроакустической трубе диаметром 41 мм при температуре 30°С. Параметры резонатора: материал – строительный битум; $\varepsilon = 0.859$, 2a = 3.8 см, h = 4.35 см; $\rho_0 = 995.7$ кг/м³, $c_0 = 1509.4$ м/с; $\rho = 1200$ кг/м³, $\mu = 0.63 \cdot 10^8$ Па, $\eta = 0.4$. Для собственной частоты (11) принят множитель 2,405. Все расчеты и построение графиков на рис. 1 (и далее, на рис. 4 и 5) выполнены на компьютере с помощью Mathcad 15.

Из рисунка следует, что приближенная формула (10) достаточно хороша для частот $\omega \leq \omega_p$.

При не слишком малых значениях η последующие сдвиговые резонансы в выражении (9) не существенны, и можно считать формулу (10) применимой также и на частотах $\omega > \omega_p$. Но в данном случае на этих частотах вклад в проводимость вносит еще и отдаленный (на частоте 19,5 кГц) полуволновой резонанс продольной волны, распространяющейся в пробке со скоростью $c_l = 1697$ м/с. В этом причина расхождения расчетных и экспериментальных данных на частотах $\omega > \omega_p$, поскольку продольной волной мы изначально пренебрегли, посчитав материал пробки несжимаемым.

Из формул (9), (10) и (11) видно, что проводимость цилиндрического резонатора обратно пропорциональна высоте пробки *h*, *a* собственная частота обратно

пропорциональна её радиусу a и не зависит от h. Последнее обстоятельство для $h \ge 2a$ подтверждают измерения автора (1976 г.), представленные на рис. 2. Слабый рост ω_p с увеличением h обязан (не учитываемой здесь) малой присоединенной массе на входе.

При $\omega \to 0$ из формулы (8) легко найти смещение пробки цилиндрического резонатора под действием гидростатического давления P_0 (Па):

$$U_0(r) = \frac{P_0}{4\mu(0)h} (a^2 - r^2)(\mathbf{M}), \tag{12}$$

откуда максимальный прогиб в центре пробки $U_0(0) = P_0 a^2/4\mu(0)h$ (м), а средний по сечению прогиб $\overline{U_0(r)} = \frac{P_0 a^2}{8\mu(0)h}$ (м). Если определить значение ω_p методом Рэлея, взяв в качестве формы колебаний статическое смещение (12) [6, с. 189, 323], то снова придем к формуле (11).

Рис. 1. Компоненты комплексной проводимости Y(f) цилиндрического резонатора: — – "точный" расчет (9); — – приближенный расчет (10); •, + – измерения

1.3. "Внешний" резонатор

Для цилиндрических резонаторов с центральным круглым отверстием (рис. 3) общие решения уравнения (6) содержат наряду с функцией Бесселя $J_0(\kappa r)$ также функцию Неймана $N_0(\kappa r)$, а определение частных решений требует учета граничных условий на обеих боковых поверхностях пробки.

"Внешний" резонатор закреплен только своей внутренней боковой поверхностью радиуса *a*, как показано на рис. 3, а. Это дает первое граничное условие:

$$V_z(a) = 0. (13)$$

Внешнюю боковую поверхность радиуса b считаем свободной от касательных напряжений, т.е. на ней $\sigma_{rz}(b) = \mu \left(\frac{\partial U_r}{\partial z} + \frac{\partial U_z}{\partial r} \right) \Big|_{r=b} = 0$, что для достаточно высоких

Рис. 2. Зависимость собственной частоты резонатора от его относительной высоты s:

– цилиндрический резонатор, s = h/2a;

– квадратный в сечении резонатор, s = h/l, l – сторона квадрата

пробок эквивалентно условию

$$\left. \frac{dV_z}{dr} \right|_{r=b} = 0. \tag{14}$$

Рис. 3. Резонаторы с двумя боковыми поверхностями и способы их крепления в гидроакустической трубе: а – "внешний" резонатор; б – "внутренний" резонатор; в – кольцевой резонатор

Это второе граничное условие.

Решением уравнения (6) для "внешнего" резонатора, удовлетворяющем граничным условиям (13), (14), будет:

$$V_z(r) = \frac{P}{i\omega\rho h} \left\{ \frac{J_0(\kappa r)N_1(\kappa b) - J_1(\kappa b)N_0(\kappa r)}{J_0(\kappa a)N_1(\kappa b) - J_1(\kappa b)N_0(\kappa a)} - 1 \right\}.$$
(15)

Вычислив среднюю по сечению пробки продольную скорость по формуле:

$$\overline{V_z(r)} = \frac{2}{b^2 - a^2} \int_a^b V_z(r) r dr,$$

найдем затем приведенную проводимость "внешних" резонаторов, распределенных по площади с поверхностной концентрацией ε :

$$Y = \frac{\varepsilon \rho_0 c_0}{i\omega \rho h} \left\{ \frac{2\kappa a}{\kappa^2 (b^2 - a^2)} \cdot \frac{J_1(\kappa b) N_1(\kappa a) - J_1(\kappa a) N_1(\kappa b)}{J_0(\kappa a) N_1(\kappa b) - J_1(\kappa b) N_0(\kappa a)} - 1 \right\}.$$
(16)

Воспользовавшись известными разложениями для цилиндрических функций [7, с. 413, 428], фигурную скобку выражения (16) можно представить в виде:

$$\{...\} = \frac{\Psi(c)x^2}{2\left[1 - A(c)x^2 + B(c)x^4 - D(c)x^6 + ...\right]},\tag{17}$$

где

$$x = \frac{\kappa a}{2},\tag{18}$$

$$c = \frac{b^2}{a^2},$$

$$\Psi(c) = \frac{2c^2}{c-1}\ln c - 3c + 1,$$
(19)

$$A(c) = c \ln c - c + 1 - \frac{1}{\Psi(c)} \left(\frac{c^3 + 2c^2 - c}{c - 1} \ln c - \frac{8}{3}c^2 + \frac{c + 1}{3} \right).$$
(20)

Оставив в знаменателе выражения (17) только два первых слагаемых, запишем:

$$\{...\} \approx \frac{\Psi(c)x^2}{2\left[1 - A(c)x^2\right]},\tag{21}$$

Подставив это в формулу (16) и учитывая (1), (7), (18), найдем:

$$Y(\omega) \approx \frac{\varepsilon \rho_0 c_0 \omega a^2 \Psi(c)}{8\mu(\omega)h} \cdot \frac{-i}{1 - \frac{\omega^2 \mu(\omega_p)}{\omega_p^2 \mu(\omega)} - i\eta(\omega)},\tag{22}$$

где

$$\omega_p = \frac{2}{a} \sqrt{\frac{\mu(\omega_p)}{\rho A(c)}}.$$
(23)

С другой стороны, из формулы (16) следует, что при $\eta \ll 1$ собственную частоту основного резонанса должен определять первый корень уравнения:

$$J_0(\kappa a)N_1(\kappa b) = J_1(\kappa b)N_0(\kappa a),$$

который согласно справочнику [8, с. 238] равен:

$$\kappa_p a = \pi \frac{[1 + \alpha(c)]}{2(\sqrt{c} - 1)},$$

где функция 1 + $\alpha(c)$ представлена в [8] графиком на рис. 136. Поэтому для ω_p также получим:

$$\omega_p = \frac{\pi [1 + \alpha(c)]}{2a(\sqrt{c} - 1)} \sqrt{\frac{\mu(\omega_p)}{\rho}}.$$
(24)

Сравнив это с выражением (23), найдем:

$$A(c) = \left\{ \frac{4(\sqrt{c} - 1)}{\pi [1 + \alpha(c)]} \right\}^2.$$

Аппроксимируя функцию 1 + $\alpha(c)$ в диапазоне c = 1...4 зависимостью 1 + $\alpha(c) = \frac{3\sqrt{c}+1}{4\sqrt{c}}$, получим

$$\omega_p = \frac{\pi(3b+a)}{8b(b-a)} \sqrt{\frac{\mu(\omega_p)}{\rho}},\tag{25}$$

$$A(c) = 2,882c \left(\frac{\sqrt{c}-1}{\sqrt{c}+\frac{1}{3}}\right)^2.$$
 (26)

Для c = 1...4 значения A(c), вычисленные по формулам (20) и (26) разнятся менее чем на 2%, что служит лишним доводом справедливости перехода (17) \rightarrow (21).

Но, видимо, лучший вариант – это найти (как в п. 1.2) для ω_p второе приближение, используя решение уравнения $1 - A(c)x^2 + B(c)x^4 = 0$.

При $c \to 1$ для функций (19), (20) имеют место разложения:

$$\Psi(c) = \frac{2}{3}(c-1)^2 \left[1 + \frac{1}{4}(c-1) + \frac{1}{10}(c-1)^2 + \frac{1}{20}(c-1)^3 + \dots \right],$$
(27)

$$A(c) = \frac{2}{5}(c-1)^2 \left[1 + \frac{7}{24}(c-1) + \frac{439}{3360}(c-1)^2 + \frac{319}{4480}(c-1)^3 + \dots \right].$$
 (28)

Случай $c = b^2/a^2 \rightarrow 1$ соответствует "внешнему" резонатору в виде длинной полосы шириною d/2 = b - a, одна боковая поверхность которой закреплена, а другая свободна. Собственная частота такого резонатора согласно формул (24), (25) равна:

$$\omega_p = \frac{\pi}{d} \sqrt{\frac{\mu(\omega_p)}{\rho}},\tag{29}$$

Почти то же самое получается и из формулы (23) с учетом разложения (28):

$$\omega_p = \frac{\sqrt{10}}{d} \sqrt{\frac{\mu(\omega_p)}{\rho}}.$$
(30)

Из соображений симметрии ясно, что такую же собственную частоту будет иметь и полосовой резонатор удвоенной ширины, у которого обе боковые поверхности закреплены, т.к. он может быть составлен из двух "внешних" резонаторов, примыкающих друг к другу свободными краями. Проводимость полосовых резонаторов найдем по формуле (22) с учетом разложения (27):

$$Y(\omega) = \frac{\varepsilon \rho_0 c_0 \omega d^2}{12\mu(\omega)h} \cdot \frac{-i}{1 - \frac{\omega^2 \mu(\omega_p)}{\omega_p^2 \mu(\omega)} - i\eta(\omega)}.$$
(31)

Формулы (29), (31) будут получены ниже другим способом при рассмотрении резонаторов, прямоугольных в плане.

При $c \gg 1$ из выражений (19), (20) следует:

$$\Psi(c) \approx c(2\ln c - 3),$$

$$A(c) \approx \frac{\Psi(c)}{2} \left[1 + \frac{7c^2}{3\Psi(c)^2} \right]$$

Эти функции обеспечивают верные значения ω_p и $Y(\omega)$ в пределе при $a \to 0$, $c \to \infty$:

$$\omega_p \approx \frac{2}{b} \sqrt{\frac{\mu(\omega_p)}{\rho \ln c}} \to 0,$$

$$(\omega) \approx \frac{\varepsilon \rho_0 c_0}{\rho c_0} \cdot \frac{\Psi(c)}{\rho c_0} \to \frac{\varepsilon \rho_0 c_0}{\rho c_0}$$

$$Y(\omega) \approx \frac{\varepsilon \rho_0 c_0}{-i\omega\rho h} \cdot \frac{\Psi(c)}{2A(c)} \to \frac{\varepsilon \rho_0 c_0}{-i\omega\rho h}.$$

Действительно, упругая энергия резонатора, концентрирующаяся вблизи его места закрепления, стремится к нулю вместе с $a \to 0$, что обеспечивает $\omega_p \to 0$ и совпадение проводимости резонатора с массовой проводимостью его пробки.

Таким образом, функции $\Psi(c)$ (19) и A(c) (20) хорошо описывают поведение "внешнего" резонатора при всех значениях $c = b^2/a^2 > 1$. Это оправдывает представление фигурной скобки выражения (16) в резонансном виде (21), где $A(c)x^2$ при малых $|x^2|$ играет роль рэлеевской поправки [9]. Квазистатическое решение, дополненное "динамической" рэлеевской поправкой, оказывается справедливым в гораздо более широкой полосе частот, чем, казалось бы, можно было предположить.

Средний по сечению прогиб "внешнего" резонатора под действием гидростатического давления *P*₀ равен:

$$\overline{U_0} = \frac{a^2 \Psi(c)}{8\mu(0)h} P_0(\mathbf{M}).$$

1.4. "Внутренний" резонатор

У "внутреннего" резонатора закреплена внешняя боковая поверхность, а внутренняя поверхность остается свободной от касательных напряжений (рис. 3, б). Если использовать обратные по сравнению с рис. 3, (а) обозначения радиусов, а именно, через *а* обозначить внешний, а через *b* – внутренний радиусы пробки, то легко установить, что для расчета "внутреннего" резонатора получим те же формулы, что и для "внешнего", с той лишь разницей, что теперь в них будет $c = b^2/a^2 < 1$. Действительно, при принятом обозначении радиусов пробки граничные условия для её сдвиговых колебаний также запишутся в виде (13), (14), а решением уравнения (6) будет выражение (15).

При вычислении собственной круговой частоты "внутреннего" резонатора по формуле (24) значения функции $1 + \alpha(c)$ следует брать из левой половины графика на рис. 136 справочника [8]. Но проще и точнее найти для (ω_n) второе приближение. При $c \to 0$ "внутренний" резонатор переходит в цилиндрический пункта 1.2. Поскольку в этом случае $\Psi(c) \to 1, A(c) \to 2/3$, то для проводимости и собственной частоты резонатора снова получаем соответственно формулы (10) и (11).

1.5. Кольцевой резонатор

Обе боковые поверхности этого резонатора – внешняя радиуса *a* и внутренняя радиуса *b* – закреплены, как показано на рис. 3, в. Поэтому граничными условиями уравнения (6) для кольцевого резонатора будут:

$$V_z(a) = 0, V_z(b) = 0,$$

а его решением -

$$V_{z}(r) = \frac{P}{i\omega\rho h} \left\{ \frac{[J_{0}(\kappa a) - J_{0}(\kappa b)]N_{0}(\kappa r) - [N_{0}(\kappa a) - N_{0}(\kappa b)]J_{0}(\kappa r)}{J_{0}(\kappa a)N_{0}(\kappa b) - J_{0}(\kappa b)N_{0}(\kappa a)} - 1 \right\}.$$
 (32)

Поступая так же, как в п. 1.3, получим для расчета кольцевого резонатора формулы, аналогичные выражениям (22), (23), где роль $\Psi(c)$ и A(c) будут играть, соответственно, функции:

$$\Psi_0(c) = \frac{2(1-c)}{\ln c} + 1 + c, \quad c = \frac{b^2}{a^2} < 1,$$
(33)

$$A_0(c) = \Psi_0(c) - \frac{1}{\Psi_0(c)} \left(\frac{1 - c^2}{lnc} + \frac{1 + 4c + c^2}{3} \right).$$
(34)

Также понадобится:

$$B_0(c) = \left[\Psi_0(c) - A_0(c)\right] \left[\frac{3}{4}\Psi_0(c) - A_0(c)\right] - \frac{1}{72}\frac{\varphi(c)}{\Psi_0(c)\ln c},$$

где

$$\varphi(c) = (1-c)(11+38c+11c^2) + 3(1+9c+9c^2+c^3)\ln c.$$

При $c \to 1$ кольцевой резонатор переходит в полосовой шириною d = a - b. Для этого случая справедливы разложения:

$$\Psi_0(c) = \frac{1}{6}(1-c)^2 \left[1 + \frac{1}{2}(1-c) + \frac{19}{60}(1-c)^2 + \frac{9}{40}(1-c)^3 + \dots \right],$$
$$A_0(c) = \frac{1}{10}(1-c)^2 \left[1 + \frac{1}{2}(1-c) + \dots \right],$$

использование которых приводит к уже известным формулам (30) и (31).

Интересно также отметить, что при $c \to 0$ кольцевой резонатор, несмотря на то, что его центральная часть закреплена по осевой линии, ведет себя как цилиндрический резонатор, поскольку из формул (33), (34) при $c \to 0$ следует: $\Psi_0(c) \to 1$, $A_0(c) \to 2/3$. Это, по-существу, тот же "вырожденный" эффект, что и для "внешнего" резонатора, закрепленного по осевой линии.

Из выражения (32) видно, что собственную частоту кольцевого резонатора можно также определить по первому корню $\kappa_p b$ уравнения

$$J_0(\kappa b \cdot \frac{a}{b})N_0(\kappa b) - J_0(\kappa b)N_0(\kappa b \cdot \frac{a}{b}) = 0,$$

который согласно справочнику [8, с. 237, рис. 134; с. 242, табл. 52] можно представить в виде:

$$\kappa_p b = \frac{S(k)}{k-1},$$

где $k = \frac{a}{b}$, S(k) – функция, график которой показан на рис. 134. С учетом (7) это дает очень простую и удобную формулу для определения собственной частоты кольцевого резонатора:

$$\omega_p = \frac{S(k)}{a-b} \sqrt{\frac{\mu(\omega_p)}{\rho}}.$$
(35)

Приближенное значение этой величины получим, заменив в (35) S(k) на функцию:

$$S_0(k) = \frac{2\left(1 - \frac{1}{k}\right)}{\sqrt{A_0(k)}}.$$
(36)

Функции S(k) и $S_0(k)$ представлены на рис. 4. Налицо систематическое небольшое превышение приближенных значений над точными в пределах 0,66...1,23% (как и при определении наименьшей собственной частоты конструкции по методу Рэлея [9]).

Рис. 4. Графики функций: — - S₀(k), (36); — - S₁(k); • - S(k), [8, табл. 52]

На рис. 4 также показана кривая $S_1(k)$ для второго приближения ω_p по п. 1.2 и п. 1.3, полученная заменой в (36) $A_0(c) \to A_1(c)$, где

$$A_1(c) = \frac{2B_0(c)}{A_0(c) - \sqrt{A_0(c)^2 - 4B_0(c)}},$$

что следует подставить в (23) вместо первого приближения $A_0(c)$. Из рисунка видно, что второе приближение существенно (примерно в 7...9 раз) точнее первого: превышение $S_1(k)$ над S(k) составляет всего 0,07...0,18%.

1.6. Прямоугольный в плане резонатор

Рассмотрим теперь резонатор с прямоугольной в плане пробкой, ограниченной в сечении осями координат и прямыми x = d, y = l. В самом общем случае аксиальные смещения достаточно высокой пробки с закрепленной боковой поверхностью можно задать в виде двойного ряда:

$$U_z(x,y,t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn}(t) \sin \frac{\pi m x}{d} \sin \frac{\pi n y}{l}.$$

Считая величины $a_{mn}(t)$ обобщенными координатами, применим для их определения принцип наименьшего действия, как это сделано в книге [10] при изучении вынужденных колебаний прямоугольной мембраны. Опуская выкладки, приведем конечные результаты:

$$Y(\omega) = \frac{64\varepsilon\rho_0 c_0}{\pi^6\mu(\omega)h} \sum_{m=1}^{\infty} \prime \sum_{n=1}^{\infty} \prime \frac{-i\omega}{m^2 n^2 \left(\frac{m^2}{d^2} + \frac{n^2}{l^2}\right) \left[1 - \frac{\omega^2\mu(\omega_{mn})}{\omega_{mn}^2\mu(\omega)} - i\eta(\omega)\right]} -$$
(37)

комплексная проводимость резонаторов прямоугольного сечения, где

$$\omega_{mn} = \pi \sqrt{\frac{\mu(\omega_{mn})}{\rho} \left(\frac{m^2}{d^2} + \frac{n^2}{l^2}\right)} -$$

собственные частоты разных мод сдвиговых колебаний пробки;

$$\overline{U_0} = \frac{64P_0}{\pi^6 \mu(0)h} \sum_{m=1}^{\infty} \prime \sum_{n=1}^{\infty} \prime \frac{1}{m^2 n^2 \left(\frac{m^2}{d^2} + \frac{n^2}{l^2}\right)} (M) -$$
(38)

средний по сечению прогиб пробки резонатора под действием гидростатического давления P_0 .

В этих формулах штрихи у знаков суммирования указывают на то, что числа m и n должны принимать только нечетные значения.

Ввиду быстрой сходимости рядов в выражении (37) основной вклад в проводимость вносит низшая мода сдвиговых колебаний (m = n = 1), имеющая собственную частоту:

$$\omega_p = \pi \sqrt{\frac{\mu(\omega_p)}{\rho} \left(\frac{1}{d^2} + \frac{1}{l^2}\right)}.$$
(39)

В подтверждение сказанного на рис. 5 приведен пример сравнения частотных зависимостей полной проводимости $Y(\omega)$ (37) и её низшей моды $Y_1(\omega)$ (m = n = 1) для следующих значений параметров: $\varepsilon = 1$; d = 4 см, l = 6,5 см, h = 8 см; $\rho_0 = 1000$ кг/м³, $c_0 = 1500$ м/с, $\mu = 1,25 \cdot 10^7$ Па, $\rho = 1200$ кг/м³, $\eta = 0,3$.

При $l \to \infty$ получим полосовой резонатор шириною d. В этом случае формула (39) переходит в (29), а из выражения (37) практически следует (31). Действительно,

Рис. 5. Проводимости прямоугольного в сечении резонатора: — – полная проводимость Y(f) (37) — – проводимость низшей моды $Y_1(f)$ (m = n = 1)

если при суммировании по *m* ограничиться лишь первым членом с m = 1 и учесть, что $\sum_{n=1}^{\infty} I \frac{1}{n^2} = \frac{\pi^2}{8}$ [11, с. 16], то числовой множитель в правой части выражения (37) для $Y(\omega)$ окажется равным $\frac{8}{\pi^4} = \frac{1}{12,18}$, что почти совпадает с числовым множителем $\frac{1}{12}$ в формуле (31).

Учитывая также, что $\sum_{m=1}^{\infty} \prime \frac{1}{m^4} = \frac{\pi^4}{96}$, [11 с. 17], из выражения (38) найдем величину среднего прогиба полосы:

$$\overline{U_0} = \frac{P_0 d^2}{12\mu(0)h} (\mathbf{M}).$$

Заключение

Получены приближенные формулы для расчета приведенных комплексных проводимостей $Y(\omega)$ и собственных частот ω_p вязкоупругих резонаторов. Формулы основаны на предположениях:

 высота пробки резонатора сравнима или больше её поперечных размеров, что позволяет считать смещения в ней преимущественно аксиальными;

– материал пробки практически несжимаем, т.е. хорошо выполняется соотношение (2), и продольные резонансы в пробке имеют место на частотах, намного превышающих сдвиговую собственную частоту ω_p ;

– в разложении полученного в этих предположениях "точного" решения допустимо оставить только два слагаемых, что приводит (переходом типа $(17) \rightarrow (21)$) к

вычленению низшей сдвиговой моды колебаний в виде резонансного выражения;

– собственной частотой ω_p резонатора следует считать её точное значение для низшей моды.

Найден простой, но очень точный способ определения второго приближения для ω_p , основанный на приравнивании нулю суммы первых трёх слагаемых в знаменателе формулы (17).

Низшая мода хорошо аппроксимирует "точное" значение проводимости на частотах $\omega \leq \omega_p$, а также при $\omega > \omega_p$, если значения η не слишком малы, когда ролью последующих сдвиговых резонансов в пробке можно пренебречь.

Рассмотренные здесь вязкоупругие резонаторы могут найти применение в разного рода звуко - и виброгасящих устройствах, а также при измерении комплексных модулей сдвига (и модулей всестороннего сжатия) вязкоупругих материалов [12].

Список литературы

1. Ландау Л.Д., Лифшиц Е.М. Теория упругости. 4-е изд., испр. и дополн. М.: Наука, 1987. 248 с.

2. Гинзбург В.Л. Об общей связи между поглощением и дисперсией звуковых волн // Акуст. журн. 1955. Т. 1. № 1. С. 31–39.

3. Нуссенцвейг Х.М. Причинность и дисперсионные соотношения. / Пер. с англ. М.: Мир, 1976. 461 с.

4. Исакович М.А. Общая акустика. Учебное пособие. М.: Наука, 1973. 495 с.

5. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. 3-е изд., перераб. М.: Наука, 1986. 736 с.

6. Бабаков И.М. Теория колебаний. 2-е изд. перераб. М.: Наука, 1965. 560 с.

7. Арфкен Г. Математические методы в физике. / Пер. с англ. М.: Атомиздат, 1970. 712 с.

8. Янке Е., Эмде Ф., Лёш Ф. Специальные функции (формулы, графики, таблицы). 2-е изд. стереотипн. / Пер. с нем. М.: Наука, 1968. 344 с.

9. Стретт Дж.В. (Лорд Рэлей). Теория звука. Т. 1. 2-е изд. / Пер. с англ. М.: ГИТТЛ, 1955. 504 с.

10. Тимошенко С.П. Колебания в инженерном деле. 2-е изд. / Пер. с англ. М.: Наука, 1967. 444 с.

11. Двайт Г.Б. Таблицы интегралов и другие математические формулы. / Пер. с англ. М.: Наука, 1964. 228 с.

12. Казаков Л.И. Способ определения динамических модулей упругости вязкоупругих материалов. Авт. свид. № 514225. БИ № 18, 1976 г.

References

1. Landau L.D., Lifshitz E.M. Theory of elasticity. 4 ed., revised and enlarged. M.: Science, 1987. 248 P. [in Russian]

2. Ginzburg V.L. On the General Relationship between Absorption and Dispersion of Sound Waves // Acoust. Phys. 1955. Vol. 1. No. 1. P. 31-39.

3. Nussenzveig H.M. Causality and Dispersion Relations. / Translated from English. M.: Mir, 1976. 461 P. [in Russian] 4. Isakovich M.A. General Acoustics. Textbook. M.: Science, 1973. 495 P. [in Russian]

5. Landau L.D., Lifshitz E.M. Hydrodynamics. 3 ed., revised, Moscow: Nauka, 1986. 736 P. [in Russian]

6. Babakov I.M. Theory of Oscillations. 2 ed., revised., Moscow: Nauka, 1965. 560 P. [in Russian]

7. Arfken G. Mathematical Methods in Physics. / Translated from English. M.: Atomizdat, 1970. 712 P. [in Russian]

8. Janke E., Emde F., Lesh F. Special Functions (Formulas, Graphs, Tables). 2 ed. stereotype. / Translation from German. M.: Science, 1968. 344 P. [in Russian]

9. Strutt. J.V. (Lord Rayleigh). Sound Theory. Vol. 1. 2 ed. / Translated from English. M.: GITTL, 1955. 504 P. [in Russian]

10. Timoshenko S.P. Oscillations in Engineering. 2 ed. / Translated from English. M.: Science, 1967. 444 P. [in Russian]

11. Dwight H.B. Tables of Integrals and Other Mathematical Formulas. / Translated from English. M.: Science, 1964. 228 P. [in Russian]

12. Kazakov L.I. A Method of Determining Dynamic Elastic Moduli of Viscoelastic Materials. Inventor's certificate No. 514225. BI No. 18, 1976.