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Abstract 

The torsional vibration analysis of double carbon nanotube system (CNT system) is carried out in the 

present work. Carbon nanotubes are connected to each other with elastic matrix material. Eringen’s Nonlocal 

Elasticity Theory is used in modeling of the system. The effects of nonlocal parameter and stiffness of elastic 

medium to the non-dimensional frequencies of the system are investigated in detail. Two frequency set are 

obtained for double carbon nanotube system for a given half wave number. It is also shown that some mode 

shapes are anti-phase and some of them are in-phase. The present results can be useful in design of nano-

electromechanical systems like rotary servomotors. 
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Аннотация 

В настоящей работе проведен анализ крутильных колебаний двойной углеродной нанотрубки 

(УНТ). Углеродные нанотрубки соединены друг с другом упругим материалом. При моделировании 

системы используется теория нелокальной упругости Эрингена. Подробно исследуются эффекты 

нелокальности и жесткости упругой среды на безразмерные частоты системы. Получены два набора 

частот для двойной углеродной нанотрубки для заданного полуволнового числа. Также показано, что 

некоторые моды являются антифазными, а некоторые из них являются синфазными. Настоящие 

результаты могут быть использованы при проектировании наноэлектромеханических систем, таких 

как вращающиеся сервомоторы. 

Ключевые слова: крутильная вибрация, двойная углеродная нанотрубка, нелокальная 

упругость, упругая среда. 

Introduction 

Carbon nanotubes (CNTs), which was discovered by Iijima [1], have been a very 

popular material for scientists and industry. Superior physical properties of carbon nanotubes 

have paved the way of applications that seems impossible before [2]. Nowadays, engineers 

have been designing probable applications for CNTs in sensor technologies, nano-mechanical 

components, electromechanical systems, etc. 

Two main approaches have been used in the CNT modeling: discrete and continuum 

models. Discrete models are based on interactions in atomic lattice structure. Molecular 

Dynamics Simulation and Lattice Dynamics are discrete models. Continuum models can also 

use in modeling of CNTs. But, the classical continuum mechanics approach is not suitable at 

the nano length scale due to its intrinsic length free formulation. Unlike the macroscale 
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mechanics, small scale effect and long distance interaction can not be ignored in nano-

dimensional mechanics. Nonlocal Elasticity Theory, which includes size effect, was proposed 

by Eringen [3–5]. With this assumption, he combined discrete and continuum models into one 

model. 

Peddision et al. [6] employed the nonlocal elasticity theory and obtained the nonlocal 

Euler-Bernoulli beam model, firstly. Wang and Varadan [7] studied the wave propagation 

characteristics of CNTs. Duan et al. [8] calibrated the small scale parameter of the nonlocal 

Timoshenko beam theory according to MD simulation results. Wang and Wang [9] presented 

the constitutive relations of nonlocal elasticity theory for Euler–Bernoulli, Timoshenko and 

cylindrical shells theories. Reddy [10] reformulated various beam theories, including the 

Euler–Bernoulli, Timoshenko, Reddy and Levinson beam theories, using the nonlocal 

differential constitutive relations. Aydogdu [11] proposed a generalized nonlocal beam theory 

for bending, buckling and free vibration of nanobeams. Gupta et al. investigated the vibration 

[12] and wall thickness and elastic moduli [13] of single-walled carbon nanotubes 

(SWCNTs). 

Torsional behaviour of CNTs has taken interests of the researchers in recent years. 

Possible application areas of CNTs have been reported by scientist as torsional oscillator [14, 

15], nano-electromechanical devices like biological rotary nano-servomotors [16–19] and 

torsion sensor in nano-composites [20]. Wang et al. [21] modeled torsional deformation of 

carbon nanotubes with using atomistic simulation. Ertekin and Chrzan [22] investigated the 

ideal torsional strength and stiffness of carbon nanotubes. Hall et al. [23] made an 

experimental measurements of SWCNT’s torsional properties. Liang and Upmanyu [24] 

showed the relation between torsion and axial deformation in CNT. Zhang and Wang [25] 

investigated the torsional buckling response of double-walled carbon nanotubes (DWCNTs) 

with using MD simulation results. Gheshlaghi et al. [26] used  the modified couple stress 

theory for the torsional vibration analysis of CNTs. Vercosa et al. [27] studied the torsional 

instability of carbon nanotubes. Murmu et al. [28] modeled a mass sensor system which 

consists of CNT and fullerene. Li et al. [29–31] proposed a semi-continuum model which 

considers the both nonlocal softening and enhancing effects. Strain gradient [32], nonlocal 

stress gradient [33] and moleculer dynamics simulation [34] of torsional vibration of CNTs 

studied by researchers. Demir ve Civalek [35] investigated the size effects in the torsional and 

axial response of microtubules. Kiani [36] studied the longitudinal, transverse, and torsional 

vibrations and stabilities of axially moving SWCNTs. Molecular dynamics study of boron-

nitride nanotubes was carried out by Ansari and Ajori [37]. Torsional vibration of CNTs 

embedded in an elastic medium [38] and viscoelastic medium [39], torsional vibration of 

DWCNTs [40], torsional wave propagation in MWCNTs [41] and nonlocal strain gradient 

analysis of torsional vibration and wave propagation of CNTs [42, 43] were carried out by 

Arda and Aydogdu. Torsional vibration of CNTs with axial velocity gradient effect studied by 

Guo et al. [44]. Fatahi-Vajari and Imam [45] used the doublet mechanics theory in torsional 

vibration analysis of CNTs. Zhu and Li [46] used nonlocal integral elasticity approach in 

longitudinal and torsional vibrations of size-dependent rods. An enhanced form of nonlocal 

elasticity was used in torsional vibration of nanobeams by Apuzzo et al. [47] Torsional 

vibration of bi-directional functionally graded nanotubes studied by Li and Hu [48].         

Murmu et al. has published some papers about longitudinal [49, 50] and flexural [51, 

52] vibration of double CNT systems. According to author’s knowledge, torsional vibration of 

double carbon nanotube (DCNT) system embedded in an elastic medium has not been 

considered yet. The aim of this study is to investigate the torsional dynamics of the DCNT 

system considering nonlocality and stiffness of elastic medium. Effect of the parameters to the 

DCNT system’s mode shapes are depicted. 
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1. Analysis 

Let’s assume a carbon nanotube with length L and diameter d. The stress resultant 

for the nanotube due to the shear stress is expressed as: 

𝑆 = ∫ 𝜏 𝑑𝐴
𝐴

     (1) 

where A is the cross-section area of the CNT, and the torque relation is given as: 

𝑇 = ∫ 𝜏𝑧 𝑑𝐴
𝐴

     (2) 

where z is a distance from center of the circular section. The equation of motion for 

torsional deformation is expressed as [53]: 

𝐺𝐼𝑃
𝜕2𝜃

𝜕𝑥2 = 𝜌𝐼𝑃
𝜕2𝜃

𝜕𝑡2 + 𝑇     (3) 

where ρ is the density, IP is the polar moment of inertia, R1 and R2 is the inner and 

outer radius, θ is the angular displacement of CNT and T is the elastic medium torque effect.  

The Ip is defined as: 

𝐼𝑃 = 𝜋
(𝑅2

4−𝑅1
4)

2
    (4) 

2. Double CNT System 

Double carbon nanotube system is consist of two carbon nanotubes with identical 

chiralites and they are covered with elastic medium (Fig. 1). 

 

Fig. 1. Double CNT System with Elastic Medium:  

(a) C-C and (b) C-F Boundary Conditions 

 

Considering the elastic medium effect between the two tubes, the equations of 

motion of each tubes can be written as: 

𝐺𝑖𝐼𝑃𝑖

𝜕2𝜃𝑖

𝜕𝑥2 = 𝜌𝑖𝐼𝑃𝑖

𝜕2𝜃𝑖

𝜕𝑡2 + 𝑇𝑖    (5) 

where subscripts i is used to define the quantities belongs to tube. θi is the angular 

displacement, Ipi is the polar moment of inertia and Gi is the shear modulus of the 

corresponding tube. Ti is the torque that occurred by interaction due to elastic medium. Elastic 

medium effect on first and second CNTs are defined as below: 

𝑇1 = 𝑘(𝜃1 − 𝜃2)  (6) 

𝑇2 = 𝑘(𝜃2 − 𝜃1)  (7) 

where k is the stiffness of the elastic medium which covers the CNTs. 

3. Nonlocal Elasticity Theory 

The nonlocal constitute relation can be given as [3, 4, 11]; 

(1 − 𝜇𝛻2)𝜏𝑘𝑙 = 𝜆𝜀𝑟𝑟𝛿𝑘𝑙 + 2𝐺𝜀𝑘𝑙    (8) 
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where τkl is the nonlocal stress tensor, εkl is the strain tensor, λ and G are the Lame constants, 

μ=(e0a)
2
 is called the nonlocal parameter, a is an internal characteristic length and e0 is a 

constant. Eringen [3] determined this parameter with matching the dispersion curves based on 

the atomic models. Wang et al [54] made estimation for the SWCNT as e0a ≤ 2nm. Aydogdu 

[55] has obtained that e0 is material and length dependent for axial wave propagation.  

For the torsional deformation of uniform CNT, Eq. (8) can be written in the one 

dimensional form: 

(1 − 𝜇
𝜕2

𝜕𝑥2) 𝜏 = 𝐺𝛾   (9) 

where γ is the shear strain and τ is the shear stress of CNT. By using the Eq. (1), (2) and 

Eq. (9) we get the constitute relation as: 

𝑆 − (𝑒0𝑎)2 𝜕2𝑆

𝜕𝑥2
= 𝐺𝐴𝛾   (10) 

𝑇 − (𝑒0𝑎)2 𝜕2𝑇

𝜕𝑥2
= 𝐺𝐼𝑃

𝜕𝜃

𝜕𝑥
   (11) 

If Eq. (11) is inserted into Eq. (3) one obtains: 

𝐺𝐼𝑃
𝜕2𝜃

𝜕𝑥2 = (1 − 𝜇
𝜕2

𝜕𝑥2) 𝜌𝐼𝑃
𝜕2𝜃

𝜕𝑡2 + (1 − 𝜇
𝜕2

𝜕𝑥2) 𝑇    (12) 

Eq. (12) is the governing equation of the CNT for the torsional deformation. If we 

choose =0 we get the classical elasticity equation of torsional deformation. If Eq. (6) and 

Eq. (7) are inserted into Eq. (12), the equations of motion for DWCNT are obtained as: 

𝐺𝐼𝑃
𝜕2𝜃1

𝜕𝑥2 = 𝜌𝐼𝑃
𝜕2𝜃1

𝜕𝑡2 − 𝜇𝜌𝐼𝑃
𝜕4𝜃1

𝜕𝑥2𝜕𝑡2 + 𝑘(𝜃1 − 𝜃2) − 𝜇𝑘 (
𝜕2𝜃1

𝜕𝑥2 −
𝜕2𝜃2

𝜕𝑥2 ) (13) 

𝐺𝐼𝑃
𝜕2𝜃2

𝜕𝑥2 = 𝜌𝐼𝑃
𝜕2𝜃2

𝜕𝑡2 − 𝜇𝜌𝐼𝑃
𝜕4𝜃2

𝜕𝑥2𝜕𝑡2 + 𝑘(𝜃2 − 𝜃1) − 𝜇𝑘 (
𝜕2𝜃2

𝜕𝑥2 −
𝜕2𝜃1

𝜕𝑥2 ) (14) 

For harmonic vibration, the angular displacement θi can be expressed as: 

𝜃𝑖(𝑥, 𝑡) = 
𝑖
(𝑥)𝑒𝑖𝜔𝑡  (15) 

where  is the angular velocity. To find simple analytical solutions for the Clamped-Clamped 

(C-C) and Clamped-Free (C-F) boundary conditions, (𝑥) can be assumed as: 


𝑖
(𝑥) = 𝐴𝑖 sin(𝛽𝑥)  (16) 

where 𝐴𝑖 is the amplitude of the i
th

 tube. β is the characteristic parameter and can be defined 

as 𝛽 = 𝑚𝜋 for (C-C) boundary condition and 𝛽 =
2𝑚−1

2
𝜋 for (C-F) boundary condition 

where m is the half wave number.  If we insert Eq. (20) into Eq. (18) and Eq. (19) with 

dimensionless parameter (𝑥̅ =
𝑥

𝐿
) we get the following dimensionless equations of motion: 

𝜕2𝜃1

𝜕𝑥̅2 (1 −
µ

𝐿2 𝛺2 +
µ

𝐿2 𝐾) + 𝜃1(𝛺2 − 𝐾) +
𝜕2𝜃2

𝜕𝑥̅2 (−
µ

𝐿2 𝐾) + 𝜃2(𝐾) = 0 (17) 

𝜕2𝜃1

𝜕𝑥̅2 (−
µ

𝐿2 𝐾) + 𝜃1(𝐾) +
𝜕2𝜃2

𝜕𝑥̅2 (1 −
µ

𝐿2 𝛺2 +
µ

𝐿2 𝐾) + 𝜃2(𝛺2 − 𝐾) = 0 (18) 

where related terms are defined  

𝛺2 =
𝜌𝜔2𝐿2

𝐺
   ,   𝐾 =

𝑘𝐿2

𝐺𝐼𝑃
  (19) 

where 𝛺 is the non-dimensional frequency parameter (NDFP) and K is the non-dimensional 

stiffness of elastic medium. Introducing Eq. (16) into Eq. (17) and Eq. (18) gives following 

eigen-value equation: 

[
−𝛽2 (1 −

µ

𝐿2 𝛺2 +
µ

𝐿2 𝐾) + (𝛺2 − 𝐾) 𝛽2 µ

𝐿2 𝐾 + 𝐾

𝛽2 µ

𝐿2 𝐾 + 𝐾 −𝛽2 (1 −
µ

𝐿2 𝛺2 +
µ

𝐿2 𝐾) + (𝛺2 − 𝐾)
] [

𝐴1

𝐴2
] = [

0
0

]

 (20) 

Non-dimensional frequencies for the double CNT system can be obtained from the 

determinant of the coefficient matrix in Eq. (20). It should be noted that for a given half wave 

number m, two frequencies are obtained: 𝛺𝐿 is the lower order resonant frequency and 𝛺𝐻 is 
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higher order resonant frequency. Inserting the NDFP into Eq. (20) gives the amplitude ratio of 

the two tubes in the following form: 

𝐴2

𝐴1
=

−𝛽2(1−
µ

𝐿2𝛺2+
µ

𝐿2𝐾)+(𝛺2−𝐾)

𝛽2 µ

𝐿2𝐾+𝐾
   (21) 

From the Eq. (21) it can be seen that, amplitude ratio may be positive or negative. 

The positive ratio means an in-phase motion in which nanotubes rotate in same direction and 

negative ratio means anti-phase motion in which nanotubes rotate in opposite directions. In 

the next section, mode shapes are shown in detail. 

4. Numerical Results and Discussion 

In this section, the NDFPs of torsional vibration of DCNT system are investigated 

for various nonlocal parameter and elastic medium stiffness parameter.  

There have been many researches about physical properties of CNTs. Nanotube 

radius has essential role on the shear modulus (G). In the present study, it is selected from the 

[56]. Density (ρ) of CNTs is determined using the calculation method given in [57]. There 

have been different assumptions in literature about thickness of CNT. In this work, CNT 

thickness is accepted as 0.132 nm according to Ref. [58]. Material properties of CNTs are 

given in Table 1. 

 

Table 1 

Material properties for CNT 

CNT 
Inner Radius (Ri) 

(nm) 

Density (ρ) 

(kg/m
3
) 

Shear Modulus (G) 

(TPa) 

Armchair (6,6) 0.409 4961 0.425 

 

Validation of the present nonlocal nanotube model has been carried out in previous 

studies [38, 40, 41]. Two different discrete model (Lattice and Molecular Dynamics) torsional 

frequency results have been used in order to compare the stress gradient nonlocal model. 

Nonlocal theory results are in good agreement with discrete model results. 

5. Results 

Nonlocal effect on DCNT system’s non-dimensional frequencies (NDF) can be seen 

in Fig. (2). Nonlocality decreases the both higher and lower order frequencies with softening 

effect in lattice structure. Nonlocal effect is less effective in (C-F) case because of the 

geometric condition at the free end. Stiffness of elastic medium effect is depicted in Fig. (3). 

When the lower order frequency stands still, higher order frequency increases with enhancing 

stiffness. Elastic medium effectuates a gap between lower and higher order frequencies. Like 

the phonon gaps [59], higher order frequency ascends and increase the non-resonance area for 

DCNT system. 
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Fig. 2. Nonlocal Effect on Non-Dimensional Frequencies 

 

 

Fig. 3. Stiffness of Elastic Medium Effect Non-Dimensional Frequencies 

 

Mode shapes for 1
st
 mode frequencies of DCNT system is shown in Figs. (4)-(7). 

Both nonlocal and stiffness of elastic medium increases the amplitude of nanotubes. Stiffness 

has more pronounced effect on amplitude rather than nonlocality. In lower order frequency, 

first nanotube has negative amplitude and that means nanotubes are rotating reverse direction. 

This situation is called anti-phase motion. In higher order frequency, both nanotubes have 

positive amplitude and they are rotating same direction. This is the in-phase motion. 

Amplitude ratio in Eq. (21), which depends to higher and lower order frequencies, 

determines whether in-phase or anti-phase motion will be occurred. 
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Fig. 4. Nonlocal Effect on 1st Mode Shapes of DCNT System (C-C) 

 

 

Fig. 5. Elastic Medium Effect on 1
st
 Mode Shapes of DCNT System (C-C) 

 

 

Fig. 6. Nonlocal Effect on 1
st
 Mode Shapes of DCNT System (C-F) 
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Fig. 7. Elastic Medium Effect on 1
st
 Mode Shapes of DCNT System (C-F) 

 

 

 

Fig. 8. Nonlocal Effect on 2
nd

 and 3
rd

 Mode Shapes of DCNT System (C-C) 

 

 

Fig. 9. Elastic Medium Effect on 2
nd

 and 3
rd

 Mode Shapes of DCNT System (C-C) 
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Fig. 10. Nonlocal Effect on 2
nd

 and 3
rd

 Mode Shapes of DCNT System (C-F) 

 

 

Fig. 11. Elastic Medium Effect on 2
nd

 and 3
rd

 Mode Shapes of DCNT System (C-F) 

Conclusion 

In this study, torsional vibration behavior of DCNT system is investigated. An elastic 

matrix is assumed between the nanotubes and it connects the nanotubes to each other. 

Governing equation of DCNT system is obtained with the nonlocal elasticity theory. Effects 

of nonlocal and stiffness of elastic medium parameters to non-dimensional frequency is 

studied. Following general results are obtained: 

 Elastic medium creates a frequency band gap between the lower and higher order 

frequencies; 

 Nonlocality decreases both lower and higher order frequencies with softening effect; 

 Both elastic medium and nonlocality increases the amplitudes of DCNT system. 

Elastic medium has more pronounce effect on amplitude; 

 Amplitude ratio determines the in-phase or anti-phase motion for carbon nanotubes. 
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